Bathymetric and subglacial hydrological context for the basal melting of Antarctic ice shelves ...

Today, Antarctica holds a 58 m (190 ft) sea level potential locked in its grounded ice. Ice shelves serve as a gatekeeper to this grounded ice. However, sea level is currently rising at an alarming rate, ultimately endangering lives and economies all over the world. To accurately project the future...

Full description

Bibliographic Details
Main Author: Wei, Wei
Format: Thesis
Language:English
Published: The University of Texas at Austin 2021
Subjects:
Online Access:https://dx.doi.org/10.26153/tsw/41879
https://repositories.lib.utexas.edu/handle/2152/114976
Description
Summary:Today, Antarctica holds a 58 m (190 ft) sea level potential locked in its grounded ice. Ice shelves serve as a gatekeeper to this grounded ice. However, sea level is currently rising at an alarming rate, ultimately endangering lives and economies all over the world. To accurately project the future sea level in an ever-changing climate requires a deeper understanding of how ice shelves respond to environmental changes. Hence, this dissertation seeks to further our understanding of the ice-ocean-interaction process by investigating the mechanisms causing ice shelf changes and the sensitivity of ice shelves to changes in their oceanic environment. To achieve this, a combination of observation and modeling approaches are deployed. We provide the bathymetric and subglacial discharge context for two significant ice shelves, Getz Ice Shelf in West Antarctica and West Ice Shelf in East Antarctica. Getz Ice Shelf is the largest meltwater source from Antarctica to the Southern Ocean, highlighting a need to understand ...