Investigation of chemically bonded phosphate ceramics/cements and applicability of magnesium potassium phosphate cements as wellbore sealants in the oil & gas industry

Cementing jobs especially in arctic regions and/or geothermal fields in the oil and gas industry pose significant challenges and demand critical mechanical properties on cements. Researchers propose that chemically bonded phosphate ceramics/cements (CBPC) can successfully be used as wellbore sealant...

Full description

Bibliographic Details
Main Author: Barut, Kahraman
Format: Article in Journal/Newspaper
Language:English
Published: The University of Texas at Austin 2018
Subjects:
Online Access:https://dx.doi.org/10.26153/tsw/1439
https://repositories.lib.utexas.edu/handle/2152/74319
id ftdatacite:10.26153/tsw/1439
record_format openpolar
spelling ftdatacite:10.26153/tsw/1439 2023-05-15T14:59:54+02:00 Investigation of chemically bonded phosphate ceramics/cements and applicability of magnesium potassium phosphate cements as wellbore sealants in the oil & gas industry Barut, Kahraman 2018 application/pdf https://dx.doi.org/10.26153/tsw/1439 https://repositories.lib.utexas.edu/handle/2152/74319 en eng The University of Texas at Austin Chemically bonded phosphate cements Magnesium potassium phosphate cements Well cementing CreativeWork article 2018 ftdatacite https://doi.org/10.26153/tsw/1439 2021-11-05T12:55:41Z Cementing jobs especially in arctic regions and/or geothermal fields in the oil and gas industry pose significant challenges and demand critical mechanical properties on cements. Researchers propose that chemically bonded phosphate ceramics/cements (CBPC) can successfully be used as wellbore sealants where conventional Portland cement systems fail to meet desired properties. Chemically bonded phosphate cements can be described as rapid setting cements, which achieve the hardness and the durability of conventional cements and ceramics. Magnesium potassium phosphate cements (MKPC) are the most developed materials in the family of chemically bonded phosphate cements. They are formed at ambient temperatures by chemical reactions between dead burned magnesium oxide (MgO) and potassium dihydrogen phosphate (KH₂PO₄). In general, they exhibit superior mechanical properties than Portland cement systems, and they have successfully found applications in various fields where the benefits outweigh the costs such as radioactive/hazardous waste encapsulation, biomedical/clinical treatments, and civil engineering structural materials. In the literature, only a few MKPC formulations have been proposed as wellbore sealants for permafrost wells by simulating the arctic conditions. In this thesis, an investigation of the applicability of chemically bonded phosphate ceramics/cements in the oil and gas industry has been conducted with a primary focus on magnesium potassium phosphate cements (MKPC). Furthermore, new MKPC formulations in compliance with American Petroleum Institute (API) standards with sufficiently long thickening time (pumping time) and enough compressive strengths have been achieved at 72 ⁰F temperature and at atmospheric pressure conditions by this study Article in Journal/Newspaper Arctic permafrost DataCite Metadata Store (German National Library of Science and Technology) Arctic
institution Open Polar
collection DataCite Metadata Store (German National Library of Science and Technology)
op_collection_id ftdatacite
language English
topic Chemically bonded phosphate cements
Magnesium potassium phosphate cements
Well cementing
spellingShingle Chemically bonded phosphate cements
Magnesium potassium phosphate cements
Well cementing
Barut, Kahraman
Investigation of chemically bonded phosphate ceramics/cements and applicability of magnesium potassium phosphate cements as wellbore sealants in the oil & gas industry
topic_facet Chemically bonded phosphate cements
Magnesium potassium phosphate cements
Well cementing
description Cementing jobs especially in arctic regions and/or geothermal fields in the oil and gas industry pose significant challenges and demand critical mechanical properties on cements. Researchers propose that chemically bonded phosphate ceramics/cements (CBPC) can successfully be used as wellbore sealants where conventional Portland cement systems fail to meet desired properties. Chemically bonded phosphate cements can be described as rapid setting cements, which achieve the hardness and the durability of conventional cements and ceramics. Magnesium potassium phosphate cements (MKPC) are the most developed materials in the family of chemically bonded phosphate cements. They are formed at ambient temperatures by chemical reactions between dead burned magnesium oxide (MgO) and potassium dihydrogen phosphate (KH₂PO₄). In general, they exhibit superior mechanical properties than Portland cement systems, and they have successfully found applications in various fields where the benefits outweigh the costs such as radioactive/hazardous waste encapsulation, biomedical/clinical treatments, and civil engineering structural materials. In the literature, only a few MKPC formulations have been proposed as wellbore sealants for permafrost wells by simulating the arctic conditions. In this thesis, an investigation of the applicability of chemically bonded phosphate ceramics/cements in the oil and gas industry has been conducted with a primary focus on magnesium potassium phosphate cements (MKPC). Furthermore, new MKPC formulations in compliance with American Petroleum Institute (API) standards with sufficiently long thickening time (pumping time) and enough compressive strengths have been achieved at 72 ⁰F temperature and at atmospheric pressure conditions by this study
format Article in Journal/Newspaper
author Barut, Kahraman
author_facet Barut, Kahraman
author_sort Barut, Kahraman
title Investigation of chemically bonded phosphate ceramics/cements and applicability of magnesium potassium phosphate cements as wellbore sealants in the oil & gas industry
title_short Investigation of chemically bonded phosphate ceramics/cements and applicability of magnesium potassium phosphate cements as wellbore sealants in the oil & gas industry
title_full Investigation of chemically bonded phosphate ceramics/cements and applicability of magnesium potassium phosphate cements as wellbore sealants in the oil & gas industry
title_fullStr Investigation of chemically bonded phosphate ceramics/cements and applicability of magnesium potassium phosphate cements as wellbore sealants in the oil & gas industry
title_full_unstemmed Investigation of chemically bonded phosphate ceramics/cements and applicability of magnesium potassium phosphate cements as wellbore sealants in the oil & gas industry
title_sort investigation of chemically bonded phosphate ceramics/cements and applicability of magnesium potassium phosphate cements as wellbore sealants in the oil & gas industry
publisher The University of Texas at Austin
publishDate 2018
url https://dx.doi.org/10.26153/tsw/1439
https://repositories.lib.utexas.edu/handle/2152/74319
geographic Arctic
geographic_facet Arctic
genre Arctic
permafrost
genre_facet Arctic
permafrost
op_doi https://doi.org/10.26153/tsw/1439
_version_ 1766332012826722304