Influence of Global Atmospheric Circulation Variations on Weather and Climate Extremes

Global warming and climate change deeply influence weather and climate extremes, causing substantial property damage and loss every year around the world. Given the importance of heating differences between low-latitude and Arctic regions, which produce heat sources and cold sources that each influe...

Full description

Bibliographic Details
Main Author: Lin, Yen-Heng
Format: Text
Language:unknown
Published: Utah State University 2018
Subjects:
Online Access:https://dx.doi.org/10.26076/7a2c-3314
https://digitalcommons.usu.edu/etd/7238
id ftdatacite:10.26076/7a2c-3314
record_format openpolar
spelling ftdatacite:10.26076/7a2c-3314 2023-05-15T14:52:03+02:00 Influence of Global Atmospheric Circulation Variations on Weather and Climate Extremes Lin, Yen-Heng 2018 https://dx.doi.org/10.26076/7a2c-3314 https://digitalcommons.usu.edu/etd/7238 unknown Utah State University article-journal Text ScholarlyArticle 2018 ftdatacite https://doi.org/10.26076/7a2c-3314 2022-02-08T13:40:45Z Global warming and climate change deeply influence weather and climate extremes, causing substantial property damage and loss every year around the world. Given the importance of heating differences between low-latitude and Arctic regions, which produce heat sources and cold sources that each influence global circulations, we investigate three extreme weather events in different regions in order to better understand the possible connections between extreme events and global circulation changes. This study begins with climate variations in the low-latitude western North Pacific. In early summer, the timing of the wet season has shifted from late May to early June since 1979. This change influences the water supply in Southeast Asia. Our analysis results indicate that the increase in global temperatures is suggested to have induced this change. During the hurricane season, deep convection in the western North Pacific has a 20-year frequency of timing variations, oscillating between July and August and influencing hurricane activity. These variations have not been previously identified and do not have any driven forcings, but a precursor deep-convection signal is found in the spring. Mid-latitude weather and climate can be influenced by tropical deep convection through the Pacific North American teleconnection. Our analysis results suggest that the wintertime Californian drought is mainly modulated by a teleconnection pattern from the tropics and natural variations in North Pacific circulation. Another key factor that influences mid-latitude circulation is Arctic temperature variations. We find an increase in the subseasonal Arctic warming event, suggesting more weather extremes in the mid-latitudes. Evidence suggests that sea-ice loss and the increase in tropical deep convection results in the increased likelihood of a subseasonal Arctic warming event. Text Arctic Climate change Global warming Sea ice DataCite Metadata Store (German National Library of Science and Technology) Arctic Pacific
institution Open Polar
collection DataCite Metadata Store (German National Library of Science and Technology)
op_collection_id ftdatacite
language unknown
description Global warming and climate change deeply influence weather and climate extremes, causing substantial property damage and loss every year around the world. Given the importance of heating differences between low-latitude and Arctic regions, which produce heat sources and cold sources that each influence global circulations, we investigate three extreme weather events in different regions in order to better understand the possible connections between extreme events and global circulation changes. This study begins with climate variations in the low-latitude western North Pacific. In early summer, the timing of the wet season has shifted from late May to early June since 1979. This change influences the water supply in Southeast Asia. Our analysis results indicate that the increase in global temperatures is suggested to have induced this change. During the hurricane season, deep convection in the western North Pacific has a 20-year frequency of timing variations, oscillating between July and August and influencing hurricane activity. These variations have not been previously identified and do not have any driven forcings, but a precursor deep-convection signal is found in the spring. Mid-latitude weather and climate can be influenced by tropical deep convection through the Pacific North American teleconnection. Our analysis results suggest that the wintertime Californian drought is mainly modulated by a teleconnection pattern from the tropics and natural variations in North Pacific circulation. Another key factor that influences mid-latitude circulation is Arctic temperature variations. We find an increase in the subseasonal Arctic warming event, suggesting more weather extremes in the mid-latitudes. Evidence suggests that sea-ice loss and the increase in tropical deep convection results in the increased likelihood of a subseasonal Arctic warming event.
format Text
author Lin, Yen-Heng
spellingShingle Lin, Yen-Heng
Influence of Global Atmospheric Circulation Variations on Weather and Climate Extremes
author_facet Lin, Yen-Heng
author_sort Lin, Yen-Heng
title Influence of Global Atmospheric Circulation Variations on Weather and Climate Extremes
title_short Influence of Global Atmospheric Circulation Variations on Weather and Climate Extremes
title_full Influence of Global Atmospheric Circulation Variations on Weather and Climate Extremes
title_fullStr Influence of Global Atmospheric Circulation Variations on Weather and Climate Extremes
title_full_unstemmed Influence of Global Atmospheric Circulation Variations on Weather and Climate Extremes
title_sort influence of global atmospheric circulation variations on weather and climate extremes
publisher Utah State University
publishDate 2018
url https://dx.doi.org/10.26076/7a2c-3314
https://digitalcommons.usu.edu/etd/7238
geographic Arctic
Pacific
geographic_facet Arctic
Pacific
genre Arctic
Climate change
Global warming
Sea ice
genre_facet Arctic
Climate change
Global warming
Sea ice
op_doi https://doi.org/10.26076/7a2c-3314
_version_ 1766323179290099712