Structure of benthic microbial mat assemblages in Lake Fryxell, Antarctica.

Microbial mats are important components of perennially ice-covered Antarctic lakes in the McMurdo Dry Valleys, where they often comprise the dominant biomass in this cold, shaded environment. These lakes represent some of the most extreme lacustrine environments on Earth, including a persistent ice-...

Full description

Bibliographic Details
Main Author: Hillman, Colin
Format: Article in Journal/Newspaper
Language:English
Published: University of Canterbury. Gateway Antarctica 2013
Subjects:
Online Access:https://dx.doi.org/10.26021/7528
https://ir.canterbury.ac.nz/handle/10092/8737
id ftdatacite:10.26021/7528
record_format openpolar
institution Open Polar
collection DataCite Metadata Store (German National Library of Science and Technology)
op_collection_id ftdatacite
language English
topic microbial mats
Antarctica
Lake Fryxell
emergent structures
stromatolites
spellingShingle microbial mats
Antarctica
Lake Fryxell
emergent structures
stromatolites
Hillman, Colin
Structure of benthic microbial mat assemblages in Lake Fryxell, Antarctica.
topic_facet microbial mats
Antarctica
Lake Fryxell
emergent structures
stromatolites
description Microbial mats are important components of perennially ice-covered Antarctic lakes in the McMurdo Dry Valleys, where they often comprise the dominant biomass in this cold, shaded environment. These lakes represent some of the most extreme lacustrine environments on Earth, including a persistent ice-cover, stable, stratified water columns, with strong salinity related density gradients. In these low-disturbance environments, the microbial consortia develop macroscopic emergent structures such as pinnacles and ridges. Such structures are speculated to confer advantageous survival traits and have also been found in the Precambrian fossil record as “conophyton” stromatolites – arguably some of the earliest evidence of life – and it has been suggested that a better understanding of the growth dynamics of modern “conophyton” will inform our understanding of what was required for these early fossils to be produced. Despite decades of research, there are few studies of the structural basis of conophyton producing microbial mats in Antarctic lakes. To help address this gap, complex microbial mats along a transect established in Lake Fryxell, one of the McMurdo Dry Valley lakes, were examined; with the aim of documenting the distribution of different types of photosynthetic organisms and mat morphologies along environmental gradients such as light, conductivity, oxygen concentration and depth. Microbial mat samples were taken along the transect and analysed in New Zealand using confocal laser scanning microscopy, along with conventional pigment extraction techniques. Correlations between mat morphology, pigment content and lake properties were found. The appearance of bacteriochlorophylls, characteristic of green sulfur bacteria within and below the oxycline confirm a shift from aerobic to anaerobic metabolism that was consistent with mats taking on a prostrate appearance. The cyanobacterial pigment phycoerythrin was only found in the hyperoxic, relatively well lit region of the transect, and was associated with the mats forming a distinctive macroscale morphology with dense fields of cm-scale cuspate pinnacles. Between these, a hypoxic region was characterised by a relatively flat mat within which were many cm-scale pits. Structural investigations were focussed on two distinct morphologies, pinnacle and honeycomb mat. Nearly all photosynthetic organisms were located in the upper 2 mm of both pinnacle and honeycomb mats, mainly comprising diatoms and cyanobacteria. Pinnacle mats were dominated by a narrow cyanobacterium, probably a species of Leptolyngbya, which were mostly oriented vertically, which placed trichomes parallel to the direction of pinnacle extension. The honeycomb mat contained fewer narrow trichomes, rather the bulk of photosynthetic organisms were diatoms from the genera Muellaria, Navicula and Diadesmis, together with broad-trichome cyanobacteria that formed a thin skin on the surface of the mat, though absent from the pits. The type of emergent structure that is formed appears to be related to species composition, and this in turn appears to be related to the growth conditions. A model was developed to explain how species-specific growth mechanisms are involved in emergent structure formation for honeycomb and pinnacle mats.
format Article in Journal/Newspaper
author Hillman, Colin
author_facet Hillman, Colin
author_sort Hillman, Colin
title Structure of benthic microbial mat assemblages in Lake Fryxell, Antarctica.
title_short Structure of benthic microbial mat assemblages in Lake Fryxell, Antarctica.
title_full Structure of benthic microbial mat assemblages in Lake Fryxell, Antarctica.
title_fullStr Structure of benthic microbial mat assemblages in Lake Fryxell, Antarctica.
title_full_unstemmed Structure of benthic microbial mat assemblages in Lake Fryxell, Antarctica.
title_sort structure of benthic microbial mat assemblages in lake fryxell, antarctica.
publisher University of Canterbury. Gateway Antarctica
publishDate 2013
url https://dx.doi.org/10.26021/7528
https://ir.canterbury.ac.nz/handle/10092/8737
long_lat ENVELOPE(163.183,163.183,-77.617,-77.617)
ENVELOPE(-54.900,-54.900,-61.067,-61.067)
ENVELOPE(163.183,163.183,-77.617,-77.617)
geographic Antarctic
McMurdo Dry Valleys
New Zealand
Fryxell
Pinnacle
Lake Fryxell
geographic_facet Antarctic
McMurdo Dry Valleys
New Zealand
Fryxell
Pinnacle
Lake Fryxell
genre Antarc*
Antarctic
Antarctica
McMurdo Dry Valleys
genre_facet Antarc*
Antarctic
Antarctica
McMurdo Dry Valleys
op_rights Copyright Colin Hillman
https://canterbury.libguides.com/rights/theses
op_doi https://doi.org/10.26021/7528
_version_ 1766068896609075200
spelling ftdatacite:10.26021/7528 2023-05-15T13:35:41+02:00 Structure of benthic microbial mat assemblages in Lake Fryxell, Antarctica. Hillman, Colin 2013 https://dx.doi.org/10.26021/7528 https://ir.canterbury.ac.nz/handle/10092/8737 en eng University of Canterbury. Gateway Antarctica Copyright Colin Hillman https://canterbury.libguides.com/rights/theses microbial mats Antarctica Lake Fryxell emergent structures stromatolites CreativeWork article 2013 ftdatacite https://doi.org/10.26021/7528 2021-11-05T12:55:41Z Microbial mats are important components of perennially ice-covered Antarctic lakes in the McMurdo Dry Valleys, where they often comprise the dominant biomass in this cold, shaded environment. These lakes represent some of the most extreme lacustrine environments on Earth, including a persistent ice-cover, stable, stratified water columns, with strong salinity related density gradients. In these low-disturbance environments, the microbial consortia develop macroscopic emergent structures such as pinnacles and ridges. Such structures are speculated to confer advantageous survival traits and have also been found in the Precambrian fossil record as “conophyton” stromatolites – arguably some of the earliest evidence of life – and it has been suggested that a better understanding of the growth dynamics of modern “conophyton” will inform our understanding of what was required for these early fossils to be produced. Despite decades of research, there are few studies of the structural basis of conophyton producing microbial mats in Antarctic lakes. To help address this gap, complex microbial mats along a transect established in Lake Fryxell, one of the McMurdo Dry Valley lakes, were examined; with the aim of documenting the distribution of different types of photosynthetic organisms and mat morphologies along environmental gradients such as light, conductivity, oxygen concentration and depth. Microbial mat samples were taken along the transect and analysed in New Zealand using confocal laser scanning microscopy, along with conventional pigment extraction techniques. Correlations between mat morphology, pigment content and lake properties were found. The appearance of bacteriochlorophylls, characteristic of green sulfur bacteria within and below the oxycline confirm a shift from aerobic to anaerobic metabolism that was consistent with mats taking on a prostrate appearance. The cyanobacterial pigment phycoerythrin was only found in the hyperoxic, relatively well lit region of the transect, and was associated with the mats forming a distinctive macroscale morphology with dense fields of cm-scale cuspate pinnacles. Between these, a hypoxic region was characterised by a relatively flat mat within which were many cm-scale pits. Structural investigations were focussed on two distinct morphologies, pinnacle and honeycomb mat. Nearly all photosynthetic organisms were located in the upper 2 mm of both pinnacle and honeycomb mats, mainly comprising diatoms and cyanobacteria. Pinnacle mats were dominated by a narrow cyanobacterium, probably a species of Leptolyngbya, which were mostly oriented vertically, which placed trichomes parallel to the direction of pinnacle extension. The honeycomb mat contained fewer narrow trichomes, rather the bulk of photosynthetic organisms were diatoms from the genera Muellaria, Navicula and Diadesmis, together with broad-trichome cyanobacteria that formed a thin skin on the surface of the mat, though absent from the pits. The type of emergent structure that is formed appears to be related to species composition, and this in turn appears to be related to the growth conditions. A model was developed to explain how species-specific growth mechanisms are involved in emergent structure formation for honeycomb and pinnacle mats. Article in Journal/Newspaper Antarc* Antarctic Antarctica McMurdo Dry Valleys DataCite Metadata Store (German National Library of Science and Technology) Antarctic McMurdo Dry Valleys New Zealand Fryxell ENVELOPE(163.183,163.183,-77.617,-77.617) Pinnacle ENVELOPE(-54.900,-54.900,-61.067,-61.067) Lake Fryxell ENVELOPE(163.183,163.183,-77.617,-77.617)