Tide induced velocity fluctuations in the grounding zone of Darwin Glacier, Antarctica, Revealed by GNSS and SAR satellite data.

Flow velocities and flow variations of Antarctic glaciers play an important role in Antarctica's mass balance and global sea level change. Oceanic tides are known to influence ice dynamics of outlet glaciers where they become afloat. The Darwin Glacier in the Transantarctic Mountains (TAM), Ant...

Full description

Bibliographic Details
Main Author: Scheffler, Ekkehard
Format: Article in Journal/Newspaper
Language:English
Published: University of Canterbury 2017
Subjects:
Online Access:https://dx.doi.org/10.26021/6188
https://ir.canterbury.ac.nz/handle/10092/15629
id ftdatacite:10.26021/6188
record_format openpolar
spelling ftdatacite:10.26021/6188 2023-05-15T13:35:41+02:00 Tide induced velocity fluctuations in the grounding zone of Darwin Glacier, Antarctica, Revealed by GNSS and SAR satellite data. Scheffler, Ekkehard 2017 https://dx.doi.org/10.26021/6188 https://ir.canterbury.ac.nz/handle/10092/15629 en eng University of Canterbury All Rights Reserved https://canterbury.libguides.com/rights/theses Other CreativeWork Theses / Dissertations article 2017 ftdatacite https://doi.org/10.26021/6188 2021-11-05T12:55:41Z Flow velocities and flow variations of Antarctic glaciers play an important role in Antarctica's mass balance and global sea level change. Oceanic tides are known to influence ice dynamics of outlet glaciers where they become afloat. The Darwin Glacier in the Transantarctic Mountains (TAM), Antarctica, experiences tidal forcing downstream of its grounding line (GL) which modulates its flow velocity primarily over the grounding zone (GZ). In comparison to other large glaciers in the TAM, the Darwin flows relatively slowly at less than 100 m a⁻¹. Field work was carried out to locally measure small scale velocity fluctuations and ice deflection over three weeks at high temporal resolution using GNSS stations. The data are used to research the ability of radar remote sensing techniques to detect ice dynamics in 35 COSMO-SkyMed and TerraSAR-X synthetic aperture radar (SAR) satellite images from an eight month period in 2016. Tidal forcing is derived from a regional model, validated against local field measurements and used to remove tidal distortion from the SAR imagery. Flow velocities in the Darwin GZ are found to be influenced by diurnal tidal cycles with fluctuations of ±52% and weaker fortnightly variations of ±9%. This study shows that uncertainties from tidal contaminations can override the accuracy of remotely sensed information and the constellation of satellite orbit path and incidence angle affects the ability to remotely discern small scale ice dynamics. Average ice velocity is well represented in the SAR scenes and short term ice flexure reveals a tidally induced GL migration of up to 2000 m over the eight month period. Flow velocity variations at the Darwin are similar to other glaciers feeding the Ross Ice Shelf. Tide induced flow fluctuations are different at other Antarctic outlet glaciers and without a buttressing ice shelf. The unique pattern of ice dynamics in the embayment of the Darwin GZ shows that this glacier is additionally buttressed by the underlying topography and may therefore be less susceptible to environmental changes. Article in Journal/Newspaper Antarc* Antarctic Antarctica Darwin Glacier Ice Shelf Ross Ice Shelf DataCite Metadata Store (German National Library of Science and Technology) Antarctic Ross Ice Shelf Transantarctic Mountains Darwin Glacier ENVELOPE(159.000,159.000,-79.883,-79.883)
institution Open Polar
collection DataCite Metadata Store (German National Library of Science and Technology)
op_collection_id ftdatacite
language English
description Flow velocities and flow variations of Antarctic glaciers play an important role in Antarctica's mass balance and global sea level change. Oceanic tides are known to influence ice dynamics of outlet glaciers where they become afloat. The Darwin Glacier in the Transantarctic Mountains (TAM), Antarctica, experiences tidal forcing downstream of its grounding line (GL) which modulates its flow velocity primarily over the grounding zone (GZ). In comparison to other large glaciers in the TAM, the Darwin flows relatively slowly at less than 100 m a⁻¹. Field work was carried out to locally measure small scale velocity fluctuations and ice deflection over three weeks at high temporal resolution using GNSS stations. The data are used to research the ability of radar remote sensing techniques to detect ice dynamics in 35 COSMO-SkyMed and TerraSAR-X synthetic aperture radar (SAR) satellite images from an eight month period in 2016. Tidal forcing is derived from a regional model, validated against local field measurements and used to remove tidal distortion from the SAR imagery. Flow velocities in the Darwin GZ are found to be influenced by diurnal tidal cycles with fluctuations of ±52% and weaker fortnightly variations of ±9%. This study shows that uncertainties from tidal contaminations can override the accuracy of remotely sensed information and the constellation of satellite orbit path and incidence angle affects the ability to remotely discern small scale ice dynamics. Average ice velocity is well represented in the SAR scenes and short term ice flexure reveals a tidally induced GL migration of up to 2000 m over the eight month period. Flow velocity variations at the Darwin are similar to other glaciers feeding the Ross Ice Shelf. Tide induced flow fluctuations are different at other Antarctic outlet glaciers and without a buttressing ice shelf. The unique pattern of ice dynamics in the embayment of the Darwin GZ shows that this glacier is additionally buttressed by the underlying topography and may therefore be less susceptible to environmental changes.
format Article in Journal/Newspaper
author Scheffler, Ekkehard
spellingShingle Scheffler, Ekkehard
Tide induced velocity fluctuations in the grounding zone of Darwin Glacier, Antarctica, Revealed by GNSS and SAR satellite data.
author_facet Scheffler, Ekkehard
author_sort Scheffler, Ekkehard
title Tide induced velocity fluctuations in the grounding zone of Darwin Glacier, Antarctica, Revealed by GNSS and SAR satellite data.
title_short Tide induced velocity fluctuations in the grounding zone of Darwin Glacier, Antarctica, Revealed by GNSS and SAR satellite data.
title_full Tide induced velocity fluctuations in the grounding zone of Darwin Glacier, Antarctica, Revealed by GNSS and SAR satellite data.
title_fullStr Tide induced velocity fluctuations in the grounding zone of Darwin Glacier, Antarctica, Revealed by GNSS and SAR satellite data.
title_full_unstemmed Tide induced velocity fluctuations in the grounding zone of Darwin Glacier, Antarctica, Revealed by GNSS and SAR satellite data.
title_sort tide induced velocity fluctuations in the grounding zone of darwin glacier, antarctica, revealed by gnss and sar satellite data.
publisher University of Canterbury
publishDate 2017
url https://dx.doi.org/10.26021/6188
https://ir.canterbury.ac.nz/handle/10092/15629
long_lat ENVELOPE(159.000,159.000,-79.883,-79.883)
geographic Antarctic
Ross Ice Shelf
Transantarctic Mountains
Darwin Glacier
geographic_facet Antarctic
Ross Ice Shelf
Transantarctic Mountains
Darwin Glacier
genre Antarc*
Antarctic
Antarctica
Darwin Glacier
Ice Shelf
Ross Ice Shelf
genre_facet Antarc*
Antarctic
Antarctica
Darwin Glacier
Ice Shelf
Ross Ice Shelf
op_rights All Rights Reserved
https://canterbury.libguides.com/rights/theses
op_doi https://doi.org/10.26021/6188
_version_ 1766068811828559872