The role of hybridisation in the making of the species-rich arctic-alpine genus Saxifraga (Saxifragaceae)

Evolutionary processes fuelling rapid species diversification are not yet fully understood, although their major contribution to overall patterns of plant biodiversity is well established. Hybridisation is among the least understood of these processes, despite its multifaceted role in speciation pro...

Full description

Bibliographic Details
Main Authors: Ebersbach, Jana, Tkach, Natalia, Röser, Martin, Favre, Adrien
Format: Article in Journal/Newspaper
Language:unknown
Published: Universitäts- und Landesbibliothek Sachsen-Anhalt 2020
Subjects:
583
Online Access:https://dx.doi.org/10.25673/78612
https://opendata.uni-halle.de//handle/1981185920/80566
Description
Summary:Evolutionary processes fuelling rapid species diversification are not yet fully understood, although their major contribution to overall patterns of plant biodiversity is well established. Hybridisation is among the least understood of these processes, despite its multifaceted role in speciation processes being widely accepted. Species of the large arctic-alpine genus Saxifraga are notorious for their ability to hybridise; however, the overall role of hybridisation and polyploidisation for the diversification of this genus remains unknown. Here, we provide a comprehensive genus-wide review of hybridisation accounts and ploidy levels. We find that the sections of Saxifraga vary greatly in their propensity to hybridise. The majority of natural hybridisation accounts are from recent localised events (n = 71). Hybridisation hotspots were located in the Pyrenees and the European Alps, thus contrasting with the overall distribution of species richness in the genus. Hybrids or hybrid populations are often short-lived in Saxifraga due to a multitude of reproductive barriers, most commonly low F1 hybrid fertility. However, these barriers are not always fully effective, allowing for backcrossing and the formation of hybrid swarms. In addition, we find that the incidence of polyploidy varies widely across different sections of Saxifraga, with species-rich sections Porphyrion and Saxifraga showing divergent polyploidy proportions. Overall, we show that hybridisation and polyploidisation played differential roles in the diversification of this large genus. Nevertheless, a significant proportion of species are yet to be scrutinised, particularly among the Asian Saxifraga species, illustrating the need for systematic further study to fully unravel the role of hybridisation during the evolution of Saxifraga.