Modeling the Impacts of Changes in Soil Microbes and Mosses on Arctic Terrestrial Ecosystem Carbon Dynamics

The land ecosystems in northern high latitudes (>45° N) occupy 22% of the global surface and store more than 1600 Pg soil organic carbon. Warming in this region has been documented during the past decades. Warming-induced changes in regional carbon dynamics are expected to loom large in the globa...

Full description

Bibliographic Details
Main Author: Junrong Zha
Format: Thesis
Language:unknown
Published: Purdue University Graduate School 2019
Subjects:
Online Access:https://dx.doi.org/10.25394/pgs.8855717
https://hammer.figshare.com/articles/Modeling_the_Impacts_of_Changes_in_Soil_Microbes_and_Mosses_on_Arctic_Terrestrial_Ecosystem_Carbon_Dynamics/8855717
id ftdatacite:10.25394/pgs.8855717
record_format openpolar
spelling ftdatacite:10.25394/pgs.8855717 2023-05-15T14:55:51+02:00 Modeling the Impacts of Changes in Soil Microbes and Mosses on Arctic Terrestrial Ecosystem Carbon Dynamics Junrong Zha 2019 https://dx.doi.org/10.25394/pgs.8855717 https://hammer.figshare.com/articles/Modeling_the_Impacts_of_Changes_in_Soil_Microbes_and_Mosses_on_Arctic_Terrestrial_Ecosystem_Carbon_Dynamics/8855717 unknown Purdue University Graduate School Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode cc-by-4.0 CC-BY 49999 Earth Sciences not elsewhere classified FOS Earth and related environmental sciences Text Thesis article-journal ScholarlyArticle 2019 ftdatacite https://doi.org/10.25394/pgs.8855717 2021-11-05T12:55:41Z The land ecosystems in northern high latitudes (>45° N) occupy 22% of the global surface and store more than 1600 Pg soil organic carbon. Warming in this region has been documented during the past decades. Warming-induced changes in regional carbon dynamics are expected to loom large in the global carbon cycle and exert large feedbacks to the global climate system. Numerous Earth System Models have been widely used to quantify the response of terrestrial ecosystem carbon dynamics to climatic changes. However, predictions of terrestrial ecosystem carbon responses to increasing levels of atmospheric carbon dioxide (CO2) and climate change is still uncertain due to model limitations. The limitations include relatively low levels of representation of ecosystem processes that determine the exchanges of water, energy, and carbon between land ecosystems and the atmosphere and omitting some key biogeochemical mechanisms. To improve model realism and provide a better projection of the Arctic carbon dynamics, this dissertation developed three new versions of a process-based biogeochemistry models that involve more fundamental processes of terrestrial ecosystems. First, microbial dynamics and enzyme kinetics that catalyze soil carbon decomposition have been incorporated into the extant terrestrial ecosystem model TEM to remedy the inadequate representation of soil decomposition process. Furthermore, a vital microbial life-history trait, microbial dormancy, has been implemented into previous microbial-based model to consider the impacts of microbial dormancy in modeling. Additionally, the role of moss in the Arctic terrestrial ecosystem carbon quantification was also demonstrated by incorporating moss and higher plant interactions in modelling. Thesis Arctic Climate change DataCite Metadata Store (German National Library of Science and Technology) Arctic
institution Open Polar
collection DataCite Metadata Store (German National Library of Science and Technology)
op_collection_id ftdatacite
language unknown
topic 49999 Earth Sciences not elsewhere classified
FOS Earth and related environmental sciences
spellingShingle 49999 Earth Sciences not elsewhere classified
FOS Earth and related environmental sciences
Junrong Zha
Modeling the Impacts of Changes in Soil Microbes and Mosses on Arctic Terrestrial Ecosystem Carbon Dynamics
topic_facet 49999 Earth Sciences not elsewhere classified
FOS Earth and related environmental sciences
description The land ecosystems in northern high latitudes (>45° N) occupy 22% of the global surface and store more than 1600 Pg soil organic carbon. Warming in this region has been documented during the past decades. Warming-induced changes in regional carbon dynamics are expected to loom large in the global carbon cycle and exert large feedbacks to the global climate system. Numerous Earth System Models have been widely used to quantify the response of terrestrial ecosystem carbon dynamics to climatic changes. However, predictions of terrestrial ecosystem carbon responses to increasing levels of atmospheric carbon dioxide (CO2) and climate change is still uncertain due to model limitations. The limitations include relatively low levels of representation of ecosystem processes that determine the exchanges of water, energy, and carbon between land ecosystems and the atmosphere and omitting some key biogeochemical mechanisms. To improve model realism and provide a better projection of the Arctic carbon dynamics, this dissertation developed three new versions of a process-based biogeochemistry models that involve more fundamental processes of terrestrial ecosystems. First, microbial dynamics and enzyme kinetics that catalyze soil carbon decomposition have been incorporated into the extant terrestrial ecosystem model TEM to remedy the inadequate representation of soil decomposition process. Furthermore, a vital microbial life-history trait, microbial dormancy, has been implemented into previous microbial-based model to consider the impacts of microbial dormancy in modeling. Additionally, the role of moss in the Arctic terrestrial ecosystem carbon quantification was also demonstrated by incorporating moss and higher plant interactions in modelling.
format Thesis
author Junrong Zha
author_facet Junrong Zha
author_sort Junrong Zha
title Modeling the Impacts of Changes in Soil Microbes and Mosses on Arctic Terrestrial Ecosystem Carbon Dynamics
title_short Modeling the Impacts of Changes in Soil Microbes and Mosses on Arctic Terrestrial Ecosystem Carbon Dynamics
title_full Modeling the Impacts of Changes in Soil Microbes and Mosses on Arctic Terrestrial Ecosystem Carbon Dynamics
title_fullStr Modeling the Impacts of Changes in Soil Microbes and Mosses on Arctic Terrestrial Ecosystem Carbon Dynamics
title_full_unstemmed Modeling the Impacts of Changes in Soil Microbes and Mosses on Arctic Terrestrial Ecosystem Carbon Dynamics
title_sort modeling the impacts of changes in soil microbes and mosses on arctic terrestrial ecosystem carbon dynamics
publisher Purdue University Graduate School
publishDate 2019
url https://dx.doi.org/10.25394/pgs.8855717
https://hammer.figshare.com/articles/Modeling_the_Impacts_of_Changes_in_Soil_Microbes_and_Mosses_on_Arctic_Terrestrial_Ecosystem_Carbon_Dynamics/8855717
geographic Arctic
geographic_facet Arctic
genre Arctic
Climate change
genre_facet Arctic
Climate change
op_rights Creative Commons Attribution 4.0 International
https://creativecommons.org/licenses/by/4.0/legalcode
cc-by-4.0
op_rightsnorm CC-BY
op_doi https://doi.org/10.25394/pgs.8855717
_version_ 1766327863346200576