Abrupt Climate and Weather Changes Across Time Scales

The past provides evidence of abrupt climate shifts and changes in the frequency of climate and weather extremes. We explore the nonlinear response to orbital forcing and then consider climate millennial variability down to daily weather events. Orbital changes are translated into regional responses...

Full description

Bibliographic Details
Main Authors: Lohmann, Gerrit, Butzin, Martin, Eissner, Nina, Shi, Xiaoxu, Stepanek, Christian
Format: Text
Language:English
Published: FID GEO 2020
Subjects:
Online Access:https://dx.doi.org/10.23689/fidgeo-4647
https://e-docs.geo-leo.de/handle/11858/8993
id ftdatacite:10.23689/fidgeo-4647
record_format openpolar
spelling ftdatacite:10.23689/fidgeo-4647 2023-05-15T17:34:09+02:00 Abrupt Climate and Weather Changes Across Time Scales Lohmann, Gerrit Butzin, Martin Eissner, Nina Shi, Xiaoxu Stepanek, Christian 2020 https://dx.doi.org/10.23689/fidgeo-4647 https://e-docs.geo-leo.de/handle/11858/8993 en eng FID GEO Article article-journal Text ScholarlyArticle 2020 ftdatacite https://doi.org/10.23689/fidgeo-4647 2022-02-08T12:05:56Z The past provides evidence of abrupt climate shifts and changes in the frequency of climate and weather extremes. We explore the nonlinear response to orbital forcing and then consider climate millennial variability down to daily weather events. Orbital changes are translated into regional responses in temperature, where the precessional response is related to nonlinearities and seasonal biases in the system. We question regularities found in climate events by analyzing the distribution of interevent waiting times. Periodicities of about 900 and 1,150 yr are found in ice cores besides the prominent 1,500 yr cycle. However, the variability remains indistinguishable from a random process, suggesting that centennial-to-millennial variability is stochastic in nature. New numerical techniques are developed allowing for a high resolution in the dynamically relevant regions like coasts, major upwelling regions, and high latitudes. Using this model, we find a strong sensitivity of the Atlantic meridional overturning circulation depending on where the deglacial meltwater is injected into. Meltwater into the Mississippi and near Labrador hardly affect the large-scale ocean circulation, whereas subpolar hosing mimicking icebergs yields a quasi shutdown. The same multiscale approach is applied to radiocarbon simulations enabling a dynamical interpretation of marine sediment cores. Finally, abrupt climate events also have counterparts in the recent climate records, revealing a close link between climate variability, the statistics of North Atlantic weather patterns, and extreme events. Text North Atlantic DataCite Metadata Store (German National Library of Science and Technology)
institution Open Polar
collection DataCite Metadata Store (German National Library of Science and Technology)
op_collection_id ftdatacite
language English
description The past provides evidence of abrupt climate shifts and changes in the frequency of climate and weather extremes. We explore the nonlinear response to orbital forcing and then consider climate millennial variability down to daily weather events. Orbital changes are translated into regional responses in temperature, where the precessional response is related to nonlinearities and seasonal biases in the system. We question regularities found in climate events by analyzing the distribution of interevent waiting times. Periodicities of about 900 and 1,150 yr are found in ice cores besides the prominent 1,500 yr cycle. However, the variability remains indistinguishable from a random process, suggesting that centennial-to-millennial variability is stochastic in nature. New numerical techniques are developed allowing for a high resolution in the dynamically relevant regions like coasts, major upwelling regions, and high latitudes. Using this model, we find a strong sensitivity of the Atlantic meridional overturning circulation depending on where the deglacial meltwater is injected into. Meltwater into the Mississippi and near Labrador hardly affect the large-scale ocean circulation, whereas subpolar hosing mimicking icebergs yields a quasi shutdown. The same multiscale approach is applied to radiocarbon simulations enabling a dynamical interpretation of marine sediment cores. Finally, abrupt climate events also have counterparts in the recent climate records, revealing a close link between climate variability, the statistics of North Atlantic weather patterns, and extreme events.
format Text
author Lohmann, Gerrit
Butzin, Martin
Eissner, Nina
Shi, Xiaoxu
Stepanek, Christian
spellingShingle Lohmann, Gerrit
Butzin, Martin
Eissner, Nina
Shi, Xiaoxu
Stepanek, Christian
Abrupt Climate and Weather Changes Across Time Scales
author_facet Lohmann, Gerrit
Butzin, Martin
Eissner, Nina
Shi, Xiaoxu
Stepanek, Christian
author_sort Lohmann, Gerrit
title Abrupt Climate and Weather Changes Across Time Scales
title_short Abrupt Climate and Weather Changes Across Time Scales
title_full Abrupt Climate and Weather Changes Across Time Scales
title_fullStr Abrupt Climate and Weather Changes Across Time Scales
title_full_unstemmed Abrupt Climate and Weather Changes Across Time Scales
title_sort abrupt climate and weather changes across time scales
publisher FID GEO
publishDate 2020
url https://dx.doi.org/10.23689/fidgeo-4647
https://e-docs.geo-leo.de/handle/11858/8993
genre North Atlantic
genre_facet North Atlantic
op_doi https://doi.org/10.23689/fidgeo-4647
_version_ 1766132892204793856