Geologic map of Gold Butte Vermiculite Deposits: Supplement 3 from "Geology of the vermiculite deposits, Gold Butte mining district, southern Virgin Mountains, Nevada. Ogives of the East Twin Glacier, Alaska--their nature and origin. Investigations in the Taku Glacier firn, Alaska" (Thesis)

Geology of the vermiculite deposits, Gold Butte mining district, southern Virgin Mountains, Nevada: Vermiculite deposits lie within a one mile square area in the Gold Butte mining district, Southern Virgin Mountains, Nevada. An integrated field and laboratory study of the deposits was undertaken in...

Full description

Bibliographic Details
Main Author: Leighton, Freeman Beach
Format: Still Image
Language:English
Published: CaltechDATA 1952
Subjects:
gps
phd
Online Access:https://dx.doi.org/10.22002/d1.572
https://data.caltech.edu/records/572
id ftdatacite:10.22002/d1.572
record_format openpolar
institution Open Polar
collection DataCite Metadata Store (German National Library of Science and Technology)
op_collection_id ftdatacite
language English
topic Southern Virgin Mountains
Gold Butte
gps
thesis
phd
spellingShingle Southern Virgin Mountains
Gold Butte
gps
thesis
phd
Leighton, Freeman Beach
Geologic map of Gold Butte Vermiculite Deposits: Supplement 3 from "Geology of the vermiculite deposits, Gold Butte mining district, southern Virgin Mountains, Nevada. Ogives of the East Twin Glacier, Alaska--their nature and origin. Investigations in the Taku Glacier firn, Alaska" (Thesis)
topic_facet Southern Virgin Mountains
Gold Butte
gps
thesis
phd
description Geology of the vermiculite deposits, Gold Butte mining district, southern Virgin Mountains, Nevada: Vermiculite deposits lie within a one mile square area in the Gold Butte mining district, Southern Virgin Mountains, Nevada. An integrated field and laboratory study of the deposits was undertaken in an attempt to determine their origin. Particular attention was devoted to the mineralogy of the vermiculite and associated minerals and the geochemistry of vermuculitization. The deposits occur in ultramafic sheets and lenses of probable pre-Cambrian age. Peridotites and perknites have intruded pre-Cambrian migmatites, granulites, and quartzites, and now crop out in the interior of an elliptical dome. Diverse ages of ultramafic intrusives, demonstrated by crosscutting relations, suggest multiple intrusion. Intrusion and formation of the domical structure are believed essentially coincident in time, with intrusion outlasting the severe deformation associated with the forceful injection of an ultramafic crystal mush. During an early Cenozoic(?) orogeny the Gold Butte granite porphyry was emplaced. This granite was the probable source of most granitic pegmatites which are abundant in the area. Hydrothermal solutions supplied from the granitic magmas circulated through the ultramafic rocks, profoundly altering them. Vermiculite is widely distributed in altered ultramafic rocks, occurring in veins, stringers, pockets, and as scattered flakes. A study of X-ray, chemical, differential thermal and heat exfoliation data indicate two distinct types of vermiculite mixtures are present. All vermiculites examined were one of these two types or gradations between them. All must be considered varieties of hydrobiotite, for K2O is present in every case and represents a contamination by biotite layers. One type is a vermiculite-biotite mixture with the approximate ratio of 2:1, respectively. The second type is essentially biotite, containing approximately four per cent vermiculite. Both types show a marked degree of heat exfoliation, the second type to a lessor degree. Considerable variation between the ratio of vermiculite and biotite exists in a single vein. This heterogeneity is believed due to the high cation-exchange capacity of vermiculite. The fact that all samples showed either biotite interleaved with vermiculite, or non-expandable biotite along with hydrobiotite is one of the best evidences that vermiculite has altered from biotite, which most cases, is an intermediate product in the alteration of other ultramafic minerals. Vermiculitization of biotite involved (1) progressive subtraction of the alakies, (2) hydration and formation of loosely-bound interlayered water, and (3) progressive oxidation of ferrous to ferric iron. The process was largely accomplished by hydrothermal solutions. Zoning relations of vermiculite and other minerals in serpentine veins are especially indicative of hydrothermal activity. Still, other facts are suggestive of meteoric origin. Hence it is believed that meteoric solutions continued the process of vermiculitization after hydrothermal activity ceased, and perhaps, in some cases initiated it. Ogives of the East Twin Glacier, Alaska--their nature and origin: Investigations in the Taku Glacier firn, Alaska: The perfection, fine exposure, and unusual accessibility of ogives on East Twin Glacier, Alaska, make this an exceptional place in which to study the nature and origin of this phenomenon. The origin of ogives is discussed, and previous hypotheses are critically analyzed. With the exception of a hypothesis first suggested by R. T. Chamberlin, that ogives are the surficial expressions of shearing planes, no other hypothesis satisfactoriy accounts for the fact that these ogives are exposed edges of layers of denser and dirtier ice than the intervening layers. Concepts of glacier flow evolved by Demorest provide a reasonable mechanism for understanding their formation, namely, periodic obstructed extrusion flow down-glacier from an icefall. Debris which was originally basal is believed to become, by upthrusting and ablation, the surface manifestation of an ogive. : Cite this record as: Leighton, F. B. (1952). Geologic map of Gold Butte Vermiculite Deposits: Supplement 3 from "Geology of the vermiculite deposits, Gold Butte mining district, southern Virgin Mountains, Nevada. Ogives of the East Twin Glacier, Alaska--their nature and origin. Investigations in the Taku Glacier firn, Alaska" (Thesis) (Version 1.0). CaltechDATA. https://doi.org/10.22002/D1.572 or choose a different citation style. Download Citation : Unique Views: 5 Unique Downloads: 2 between January 25, 2018 and July 12, 2021 More info on how stats are collected
format Still Image
author Leighton, Freeman Beach
author_facet Leighton, Freeman Beach
author_sort Leighton, Freeman Beach
title Geologic map of Gold Butte Vermiculite Deposits: Supplement 3 from "Geology of the vermiculite deposits, Gold Butte mining district, southern Virgin Mountains, Nevada. Ogives of the East Twin Glacier, Alaska--their nature and origin. Investigations in the Taku Glacier firn, Alaska" (Thesis)
title_short Geologic map of Gold Butte Vermiculite Deposits: Supplement 3 from "Geology of the vermiculite deposits, Gold Butte mining district, southern Virgin Mountains, Nevada. Ogives of the East Twin Glacier, Alaska--their nature and origin. Investigations in the Taku Glacier firn, Alaska" (Thesis)
title_full Geologic map of Gold Butte Vermiculite Deposits: Supplement 3 from "Geology of the vermiculite deposits, Gold Butte mining district, southern Virgin Mountains, Nevada. Ogives of the East Twin Glacier, Alaska--their nature and origin. Investigations in the Taku Glacier firn, Alaska" (Thesis)
title_fullStr Geologic map of Gold Butte Vermiculite Deposits: Supplement 3 from "Geology of the vermiculite deposits, Gold Butte mining district, southern Virgin Mountains, Nevada. Ogives of the East Twin Glacier, Alaska--their nature and origin. Investigations in the Taku Glacier firn, Alaska" (Thesis)
title_full_unstemmed Geologic map of Gold Butte Vermiculite Deposits: Supplement 3 from "Geology of the vermiculite deposits, Gold Butte mining district, southern Virgin Mountains, Nevada. Ogives of the East Twin Glacier, Alaska--their nature and origin. Investigations in the Taku Glacier firn, Alaska" (Thesis)
title_sort geologic map of gold butte vermiculite deposits: supplement 3 from "geology of the vermiculite deposits, gold butte mining district, southern virgin mountains, nevada. ogives of the east twin glacier, alaska--their nature and origin. investigations in the taku glacier firn, alaska" (thesis)
publisher CaltechDATA
publishDate 1952
url https://dx.doi.org/10.22002/d1.572
https://data.caltech.edu/records/572
long_lat ENVELOPE(-65.550,-65.550,-67.367,-67.367)
ENVELOPE(-133.854,-133.854,59.633,59.633)
geographic Demorest
Taku
geographic_facet Demorest
Taku
genre glacier
Alaska
genre_facet glacier
Alaska
op_relation http://resolver.caltech.edu/CaltechETD:etd-05042006-141511
http://resolver.caltech.edu/CaltechETD:etd-05042006-141511
https://dx.doi.org/10.7907/er20-et85
op_rights public-domain
http://creativecommons.org/publicdomain/mark/1.0/
op_rightsnorm PDM
op_doi https://doi.org/10.22002/d1.572
https://doi.org/10.7907/er20-et85
_version_ 1766008368697180160
spelling ftdatacite:10.22002/d1.572 2023-05-15T16:20:27+02:00 Geologic map of Gold Butte Vermiculite Deposits: Supplement 3 from "Geology of the vermiculite deposits, Gold Butte mining district, southern Virgin Mountains, Nevada. Ogives of the East Twin Glacier, Alaska--their nature and origin. Investigations in the Taku Glacier firn, Alaska" (Thesis) Leighton, Freeman Beach 1952 application/pdf https://dx.doi.org/10.22002/d1.572 https://data.caltech.edu/records/572 en eng CaltechDATA http://resolver.caltech.edu/CaltechETD:etd-05042006-141511 http://resolver.caltech.edu/CaltechETD:etd-05042006-141511 https://dx.doi.org/10.7907/er20-et85 public-domain http://creativecommons.org/publicdomain/mark/1.0/ PDM Southern Virgin Mountains Gold Butte gps thesis phd Image graphic ImageObject 1952 ftdatacite https://doi.org/10.22002/d1.572 https://doi.org/10.7907/er20-et85 2021-11-05T12:55:41Z Geology of the vermiculite deposits, Gold Butte mining district, southern Virgin Mountains, Nevada: Vermiculite deposits lie within a one mile square area in the Gold Butte mining district, Southern Virgin Mountains, Nevada. An integrated field and laboratory study of the deposits was undertaken in an attempt to determine their origin. Particular attention was devoted to the mineralogy of the vermiculite and associated minerals and the geochemistry of vermuculitization. The deposits occur in ultramafic sheets and lenses of probable pre-Cambrian age. Peridotites and perknites have intruded pre-Cambrian migmatites, granulites, and quartzites, and now crop out in the interior of an elliptical dome. Diverse ages of ultramafic intrusives, demonstrated by crosscutting relations, suggest multiple intrusion. Intrusion and formation of the domical structure are believed essentially coincident in time, with intrusion outlasting the severe deformation associated with the forceful injection of an ultramafic crystal mush. During an early Cenozoic(?) orogeny the Gold Butte granite porphyry was emplaced. This granite was the probable source of most granitic pegmatites which are abundant in the area. Hydrothermal solutions supplied from the granitic magmas circulated through the ultramafic rocks, profoundly altering them. Vermiculite is widely distributed in altered ultramafic rocks, occurring in veins, stringers, pockets, and as scattered flakes. A study of X-ray, chemical, differential thermal and heat exfoliation data indicate two distinct types of vermiculite mixtures are present. All vermiculites examined were one of these two types or gradations between them. All must be considered varieties of hydrobiotite, for K2O is present in every case and represents a contamination by biotite layers. One type is a vermiculite-biotite mixture with the approximate ratio of 2:1, respectively. The second type is essentially biotite, containing approximately four per cent vermiculite. Both types show a marked degree of heat exfoliation, the second type to a lessor degree. Considerable variation between the ratio of vermiculite and biotite exists in a single vein. This heterogeneity is believed due to the high cation-exchange capacity of vermiculite. The fact that all samples showed either biotite interleaved with vermiculite, or non-expandable biotite along with hydrobiotite is one of the best evidences that vermiculite has altered from biotite, which most cases, is an intermediate product in the alteration of other ultramafic minerals. Vermiculitization of biotite involved (1) progressive subtraction of the alakies, (2) hydration and formation of loosely-bound interlayered water, and (3) progressive oxidation of ferrous to ferric iron. The process was largely accomplished by hydrothermal solutions. Zoning relations of vermiculite and other minerals in serpentine veins are especially indicative of hydrothermal activity. Still, other facts are suggestive of meteoric origin. Hence it is believed that meteoric solutions continued the process of vermiculitization after hydrothermal activity ceased, and perhaps, in some cases initiated it. Ogives of the East Twin Glacier, Alaska--their nature and origin: Investigations in the Taku Glacier firn, Alaska: The perfection, fine exposure, and unusual accessibility of ogives on East Twin Glacier, Alaska, make this an exceptional place in which to study the nature and origin of this phenomenon. The origin of ogives is discussed, and previous hypotheses are critically analyzed. With the exception of a hypothesis first suggested by R. T. Chamberlin, that ogives are the surficial expressions of shearing planes, no other hypothesis satisfactoriy accounts for the fact that these ogives are exposed edges of layers of denser and dirtier ice than the intervening layers. Concepts of glacier flow evolved by Demorest provide a reasonable mechanism for understanding their formation, namely, periodic obstructed extrusion flow down-glacier from an icefall. Debris which was originally basal is believed to become, by upthrusting and ablation, the surface manifestation of an ogive. : Cite this record as: Leighton, F. B. (1952). Geologic map of Gold Butte Vermiculite Deposits: Supplement 3 from "Geology of the vermiculite deposits, Gold Butte mining district, southern Virgin Mountains, Nevada. Ogives of the East Twin Glacier, Alaska--their nature and origin. Investigations in the Taku Glacier firn, Alaska" (Thesis) (Version 1.0). CaltechDATA. https://doi.org/10.22002/D1.572 or choose a different citation style. Download Citation : Unique Views: 5 Unique Downloads: 2 between January 25, 2018 and July 12, 2021 More info on how stats are collected Still Image glacier Alaska DataCite Metadata Store (German National Library of Science and Technology) Demorest ENVELOPE(-65.550,-65.550,-67.367,-67.367) Taku ENVELOPE(-133.854,-133.854,59.633,59.633)