COLLABORATIVE RESEARCH: Spatial and Temporal Influences of thermokarst features on Surface Processes in Arctic Landscapes

Recent summaries of international research clearly document the past and future extent of climate warming in the Arctic. These summaries suggest that in the future, rising temperatures will be accompanied by increased precipitation, mostly as rain: 20% more over the Arctic as a whole and up to 30% m...

Full description

Bibliographic Details
Main Author: Buckeridge, Kate
Format: Dataset
Language:English
Published: NSF Arctic Data Center 2013
Subjects:
Online Access:https://dx.doi.org/10.18739/a21g0hv8k
https://arcticdata.io/catalog/view/doi:10.18739/A21G0HV8K
Description
Summary:Recent summaries of international research clearly document the past and future extent of climate warming in the Arctic. These summaries suggest that in the future, rising temperatures will be accompanied by increased precipitation, mostly as rain: 20% more over the Arctic as a whole and up to 30% more in coastal areas during the winter and autumn. These climate changes will have important impacts on Arctic Systems. Of direct interest to this research is the likelihood that warming will promote permafrost degradation and thaw. Formerly frozen soils may be further destabilized by increased precipitation, leading to hillslope thermokarst failures. Recent work has documented that thermokarst failures are abundant and appear to have become more numerous around Toolik Lake on the eastern North Slope and in the western Noatak River basin in Alaska. A widespread and long-term increase in the incidence of thermokarst failures may have important impacts on the structure and function of arctic headwater landscapes. This research will use a systems approach to address hypotheses about how thermokarst failures influence the structure and function of the arctic landscape. It will focus on the composition of vegetation, the distribution and processing of soil nutrients, and exports of sediments and nutrients to stream and lake ecosystems. Results obtained at this hillslope scale will be linked to patterns observed at the landscape scale to test hypotheses about the spatial distribution of thermokarst failures in the arctic foothills. It is important to understand these interactions because perhaps the greatest potential impacts of changing land surface processes and formation of thermokarst failures are feedbacks to the climate system through energy, albedo, water, and trace gas exchange. This research is designed to quantify linkages among climatology, hillslope hydrology, geomorphology, geocryology, community ecology of vegetation, soil nutrient dynamics, microbial ecology, trace gas dynamics, and aquatic ecology. It will employ a combination of field experimentation, remote sensing, and simulation modeling as a means to quantify these relationships.