Bayesian Unsupervised Machine Learning Approach to Segment Arctic Sea Ice Using SMOS Data
Geophysical research letters : GRL 48(6), e2020GL091285 (2021). doi:10.1029/2020GL091285 : Published by Wiley, Hoboken, NJ
Main Authors: | , , , |
---|---|
Format: | Text |
Language: | English |
Published: |
RWTH Aachen University
2021
|
Subjects: | |
Online Access: | https://dx.doi.org/10.18154/rwth-2021-03755 https://publications.rwth-aachen.de/record/817192 |
id |
ftdatacite:10.18154/rwth-2021-03755 |
---|---|
record_format |
openpolar |
spelling |
ftdatacite:10.18154/rwth-2021-03755 2023-05-15T14:47:56+02:00 Bayesian Unsupervised Machine Learning Approach to Segment Arctic Sea Ice Using SMOS Data Herbert, Christoph Camps, Adriano Wellmann, Jan Florian Vall-llossera, Mercedes 2021 https://dx.doi.org/10.18154/rwth-2021-03755 https://publications.rwth-aachen.de/record/817192 en eng RWTH Aachen University https://dx.doi.org/10.1029/2020gl091285 550 Text Journal article article-journal ScholarlyArticle 2021 ftdatacite https://doi.org/10.18154/rwth-2021-03755 https://doi.org/10.1029/2020gl091285 2021-11-05T12:55:41Z Geophysical research letters : GRL 48(6), e2020GL091285 (2021). doi:10.1029/2020GL091285 : Published by Wiley, Hoboken, NJ Text Arctic Sea ice DataCite Metadata Store (German National Library of Science and Technology) Arctic |
institution |
Open Polar |
collection |
DataCite Metadata Store (German National Library of Science and Technology) |
op_collection_id |
ftdatacite |
language |
English |
topic |
550 |
spellingShingle |
550 Herbert, Christoph Camps, Adriano Wellmann, Jan Florian Vall-llossera, Mercedes Bayesian Unsupervised Machine Learning Approach to Segment Arctic Sea Ice Using SMOS Data |
topic_facet |
550 |
description |
Geophysical research letters : GRL 48(6), e2020GL091285 (2021). doi:10.1029/2020GL091285 : Published by Wiley, Hoboken, NJ |
format |
Text |
author |
Herbert, Christoph Camps, Adriano Wellmann, Jan Florian Vall-llossera, Mercedes |
author_facet |
Herbert, Christoph Camps, Adriano Wellmann, Jan Florian Vall-llossera, Mercedes |
author_sort |
Herbert, Christoph |
title |
Bayesian Unsupervised Machine Learning Approach to Segment Arctic Sea Ice Using SMOS Data |
title_short |
Bayesian Unsupervised Machine Learning Approach to Segment Arctic Sea Ice Using SMOS Data |
title_full |
Bayesian Unsupervised Machine Learning Approach to Segment Arctic Sea Ice Using SMOS Data |
title_fullStr |
Bayesian Unsupervised Machine Learning Approach to Segment Arctic Sea Ice Using SMOS Data |
title_full_unstemmed |
Bayesian Unsupervised Machine Learning Approach to Segment Arctic Sea Ice Using SMOS Data |
title_sort |
bayesian unsupervised machine learning approach to segment arctic sea ice using smos data |
publisher |
RWTH Aachen University |
publishDate |
2021 |
url |
https://dx.doi.org/10.18154/rwth-2021-03755 https://publications.rwth-aachen.de/record/817192 |
geographic |
Arctic |
geographic_facet |
Arctic |
genre |
Arctic Sea ice |
genre_facet |
Arctic Sea ice |
op_relation |
https://dx.doi.org/10.1029/2020gl091285 |
op_doi |
https://doi.org/10.18154/rwth-2021-03755 https://doi.org/10.1029/2020gl091285 |
_version_ |
1766319043756687360 |