Glaciological Monitoring Using the Sun as a Radio Source for Echo Detection ...
Funder: NASA Cryospheric Sciences ... : AbstractIce‐penetrating radar observations are critical for projecting ice‐sheet contribution to sea‐level rise; however, these prognostic models have significant uncertainties due to an incomplete understanding of glacial subsurface processes. Existing radars...
Main Authors: | , , , , , , |
---|---|
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
American Geophysical Union (AGU)
2021
|
Subjects: | |
Online Access: | https://dx.doi.org/10.17863/cam.73069 https://www.repository.cam.ac.uk/handle/1810/325612 |
Summary: | Funder: NASA Cryospheric Sciences ... : AbstractIce‐penetrating radar observations are critical for projecting ice‐sheet contribution to sea‐level rise; however, these prognostic models have significant uncertainties due to an incomplete understanding of glacial subsurface processes. Existing radars that can characterize subsurface conditions are too resource‐intensive to simultaneously monitor ice sheets at both the necessary temporal—daily to multiannual—and spatial—tributary to continental—scales. Here, we investigate using an ambient radio source, instead of transmitting a signal, for glaciological monitoring. We demonstrate, for the first time, passive radio sounding using the Sun to accurately measure ice thickness on Store Glacier, Greenland. Passive radar sounding could provide low‐resource time‐series measurements of the cryosphere, enabling us to observe and understand evolving englacial and subglacial conditions across Greenland and Antarctica with unprecedented coverage and resolution. ... |
---|