Fast magma ascent, revised estimates from the deglaciation of Iceland ...

Partial melting of asthenospheric mantle generates magma that supplies volcanic systems. The timescale of melt extraction from the mantle has been hotly debated. Microstructural measurements of permeability typically suggest relatively slow melt extraction (1 m/yr) whereas geochemical (Uranium-decay...

Full description

Bibliographic Details
Main Authors: Rees Jones, DW, Rudge, JF
Format: Article in Journal/Newspaper
Language:English
Published: Elsevier BV 2020
Subjects:
Online Access:https://dx.doi.org/10.17863/cam.58105
https://www.repository.cam.ac.uk/handle/1810/311015
Description
Summary:Partial melting of asthenospheric mantle generates magma that supplies volcanic systems. The timescale of melt extraction from the mantle has been hotly debated. Microstructural measurements of permeability typically suggest relatively slow melt extraction (1 m/yr) whereas geochemical (Uranium-decay series) and geophysical observations suggest much faster melt extraction (100 m/yr). The deglaciation of Iceland triggered additional mantle melting and magma flux at the surface. The rapid response has been used to argue for relatively rapid melt extraction. However, this episode must, at least to some extent, be unrepresentative, because the rates of magma eruption at the surface increased about thirty-fold relative to the steady state. Our goal is to quantify this unrepresentativeness. We develop a one-dimensional, time-dependent and nonlinear (far from steady-state), model forced by the most recent, and best mapped, Icelandic deglaciation. We find that 30 m/yr is the best estimate of the steady-state maximum ...