Seawater carbonate chemistry and net calcification of Porites, Zoanthus growth and maximum PSII efficiency of Porites and Zoanthus ...
Ocean acidification (OA) threatens the persistence of reef-building corals and the habitat they provide. While species-specific effects of OA on marine organisms could have cascading effects on ecological interactions like competition, few studies have identified how benthic reef competitors respond...
Main Authors: | , , , |
---|---|
Format: | Dataset |
Language: | English |
Published: |
PANGAEA
2022
|
Subjects: | |
Online Access: | https://dx.doi.org/10.1594/pangaea.955456 https://doi.pangaea.de/10.1594/PANGAEA.955456 |
Summary: | Ocean acidification (OA) threatens the persistence of reef-building corals and the habitat they provide. While species-specific effects of OA on marine organisms could have cascading effects on ecological interactions like competition, few studies have identified how benthic reef competitors respond to OA. We explored how two common Caribbean competitors, branching Porites and a colonial zoanthid (Zoanthus), respond to the factorial combination of OA and competition. In the laboratory, we exposed corals, zoanthids and interacting corals and zoanthids to ambient (8.01 ± 0.03) and OA (7.68 ± 0.07) conditions for 60 days. The OA treatment had no measured effect on zoanthids or coral calcification but decreased Porites maximum PSII efficiency. Conversely, the competitive interaction significantly decreased Porites calcification but had minimal-to-no countereffects on the zoanthid. Although this interaction was not exacerbated by the 60-day OA exposure, environmental changes that enhance zoanthid performance ... : In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2021) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2023-02-10. ... |
---|