Manually delineated calving fronts at Jakobshavn Isbræ, Kangerlussuaq, and Helheim ...

This dataset contains manually-delineated calving front positions at Jakobshavn Isbræ, Kangerlussuaq, Helheim, covering from 2003 to 2019. These manually-delineated calving fronts are for training, validating, and testing our deep learning network. The format of this dataset is Shapefile. ...

Bibliographic Details
Main Authors: Zhang, Enze, Liu, Lin, Huang, Lingcao, Ng, Ka Shing
Format: Dataset
Language:English
Published: PANGAEA 2020
Subjects:
Online Access:https://dx.doi.org/10.1594/pangaea.923270
https://doi.pangaea.de/10.1594/PANGAEA.923270
id ftdatacite:10.1594/pangaea.923270
record_format openpolar
spelling ftdatacite:10.1594/pangaea.923270 2024-10-29T17:43:56+00:00 Manually delineated calving fronts at Jakobshavn Isbræ, Kangerlussuaq, and Helheim ... Zhang, Enze Liu, Lin Huang, Lingcao Ng, Ka Shing 2020 text/tab-separated-values https://dx.doi.org/10.1594/pangaea.923270 https://doi.pangaea.de/10.1594/PANGAEA.923270 en eng PANGAEA https://dx.doi.org/10.1016/j.rse.2020.112265 Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode cc-by-4.0 calving front deep learning glacier Greenland Event label Binary Object Multiple investigations Dataset dataset 2020 ftdatacite https://doi.org/10.1594/pangaea.92327010.1016/j.rse.2020.112265 2024-10-01T11:00:35Z This dataset contains manually-delineated calving front positions at Jakobshavn Isbræ, Kangerlussuaq, Helheim, covering from 2003 to 2019. These manually-delineated calving fronts are for training, validating, and testing our deep learning network. The format of this dataset is Shapefile. ... Dataset glacier Greenland Jakobshavn Jakobshavn isbræ Kangerlussuaq DataCite Greenland Jakobshavn Isbræ ENVELOPE(-49.917,-49.917,69.167,69.167) Kangerlussuaq ENVELOPE(-55.633,-55.633,72.633,72.633)
institution Open Polar
collection DataCite
op_collection_id ftdatacite
language English
topic calving front
deep learning
glacier
Greenland
Event label
Binary Object
Multiple investigations
spellingShingle calving front
deep learning
glacier
Greenland
Event label
Binary Object
Multiple investigations
Zhang, Enze
Liu, Lin
Huang, Lingcao
Ng, Ka Shing
Manually delineated calving fronts at Jakobshavn Isbræ, Kangerlussuaq, and Helheim ...
topic_facet calving front
deep learning
glacier
Greenland
Event label
Binary Object
Multiple investigations
description This dataset contains manually-delineated calving front positions at Jakobshavn Isbræ, Kangerlussuaq, Helheim, covering from 2003 to 2019. These manually-delineated calving fronts are for training, validating, and testing our deep learning network. The format of this dataset is Shapefile. ...
format Dataset
author Zhang, Enze
Liu, Lin
Huang, Lingcao
Ng, Ka Shing
author_facet Zhang, Enze
Liu, Lin
Huang, Lingcao
Ng, Ka Shing
author_sort Zhang, Enze
title Manually delineated calving fronts at Jakobshavn Isbræ, Kangerlussuaq, and Helheim ...
title_short Manually delineated calving fronts at Jakobshavn Isbræ, Kangerlussuaq, and Helheim ...
title_full Manually delineated calving fronts at Jakobshavn Isbræ, Kangerlussuaq, and Helheim ...
title_fullStr Manually delineated calving fronts at Jakobshavn Isbræ, Kangerlussuaq, and Helheim ...
title_full_unstemmed Manually delineated calving fronts at Jakobshavn Isbræ, Kangerlussuaq, and Helheim ...
title_sort manually delineated calving fronts at jakobshavn isbræ, kangerlussuaq, and helheim ...
publisher PANGAEA
publishDate 2020
url https://dx.doi.org/10.1594/pangaea.923270
https://doi.pangaea.de/10.1594/PANGAEA.923270
long_lat ENVELOPE(-49.917,-49.917,69.167,69.167)
ENVELOPE(-55.633,-55.633,72.633,72.633)
geographic Greenland
Jakobshavn Isbræ
Kangerlussuaq
geographic_facet Greenland
Jakobshavn Isbræ
Kangerlussuaq
genre glacier
Greenland
Jakobshavn
Jakobshavn isbræ
Kangerlussuaq
genre_facet glacier
Greenland
Jakobshavn
Jakobshavn isbræ
Kangerlussuaq
op_relation https://dx.doi.org/10.1016/j.rse.2020.112265
op_rights Creative Commons Attribution 4.0 International
https://creativecommons.org/licenses/by/4.0/legalcode
cc-by-4.0
op_doi https://doi.org/10.1594/pangaea.92327010.1016/j.rse.2020.112265
_version_ 1814273153868759040