Seawater carbonate chemistry and hardness and stiffness of the Portuguese oyster shell, supplement to: Meng, Yuan; Guo, Zhenbin; Fitzer, Susan C; Upadhyay, Abhishek; Chan, Vera B S; Li, Chaoyi; Cusack, Maggie; Yao, Haimin; Yeung, Kelvin W K; Thiyagarajan, Vengatesen (2018): Ocean acidification reduces hardness and stiffness of the Portuguese oyster shell with impaired microstructure: a hierarchical analysis. Biogeosciences, 15(22), 6833-6846

The rapidly intensifying process of ocean acidification (OA) due to anthropogenic CO2 is not only depleting carbonate ions necessary for calcification but also causing acidosis and disrupting internal pH homeostasis in several marine organisms. These negative consequences of OA on marine calcifiers,...

Full description

Bibliographic Details
Main Authors: Meng, Yuan, Guo, Zhenbin, Fitzer, Susan C, Upadhyay, Abhishek, Chan, Vera B S, Li, Chaoyi, Cusack, Maggie, Yao, Haimin, Yeung, Kelvin W K, Thiyagarajan, Vengatesen
Format: Dataset
Language:English
Published: PANGAEA - Data Publisher for Earth & Environmental Science 2018
Subjects:
pH
Online Access:https://dx.doi.org/10.1594/pangaea.908309
https://doi.pangaea.de/10.1594/PANGAEA.908309
id ftdatacite:10.1594/pangaea.908309
record_format openpolar
institution Open Polar
collection DataCite Metadata Store (German National Library of Science and Technology)
op_collection_id ftdatacite
language English
topic Animalia
Benthic animals
Benthos
Bottles or small containers/Aquaria <20 L
Coast and continental shelf
Growth/Morphology
Laboratory experiment
Magallana angulata
Mollusca
North Pacific
Other studied parameter or process
Single species
Temperate
Type
Species
Registration number of species
Uniform resource locator/link to reference
Treatment
Area porosity
Hardness
Stiffness
Density
Volume
pH
pH, standard deviation
Temperature, water
Temperature, water, standard deviation
Salinity
Salinity, standard deviation
Alkalinity, total
Alkalinity, total, standard deviation
Partial pressure of carbon dioxide water at sea surface temperature wet air
Partial pressure of carbon dioxide, standard deviation
Carbonate ion
Carbonate ion, standard deviation
Calcite saturation state
Calcite saturation state, standard deviation
Aragonite saturation state
Aragonite saturation state, standard deviation
Carbonate system computation flag
Carbon dioxide
Fugacity of carbon dioxide water at sea surface temperature wet air
Bicarbonate ion
Carbon, inorganic, dissolved
Experiment
Potentiometric
Potentiometric titration
Calculated using CO2SYS
Calculated using seacarb after Nisumaa et al. 2010
Ocean Acidification International Coordination Centre OA-ICC
spellingShingle Animalia
Benthic animals
Benthos
Bottles or small containers/Aquaria <20 L
Coast and continental shelf
Growth/Morphology
Laboratory experiment
Magallana angulata
Mollusca
North Pacific
Other studied parameter or process
Single species
Temperate
Type
Species
Registration number of species
Uniform resource locator/link to reference
Treatment
Area porosity
Hardness
Stiffness
Density
Volume
pH
pH, standard deviation
Temperature, water
Temperature, water, standard deviation
Salinity
Salinity, standard deviation
Alkalinity, total
Alkalinity, total, standard deviation
Partial pressure of carbon dioxide water at sea surface temperature wet air
Partial pressure of carbon dioxide, standard deviation
Carbonate ion
Carbonate ion, standard deviation
Calcite saturation state
Calcite saturation state, standard deviation
Aragonite saturation state
Aragonite saturation state, standard deviation
Carbonate system computation flag
Carbon dioxide
Fugacity of carbon dioxide water at sea surface temperature wet air
Bicarbonate ion
Carbon, inorganic, dissolved
Experiment
Potentiometric
Potentiometric titration
Calculated using CO2SYS
Calculated using seacarb after Nisumaa et al. 2010
Ocean Acidification International Coordination Centre OA-ICC
Meng, Yuan
Guo, Zhenbin
Fitzer, Susan C
Upadhyay, Abhishek
Chan, Vera B S
Li, Chaoyi
Cusack, Maggie
Yao, Haimin
Yeung, Kelvin W K
Thiyagarajan, Vengatesen
Seawater carbonate chemistry and hardness and stiffness of the Portuguese oyster shell, supplement to: Meng, Yuan; Guo, Zhenbin; Fitzer, Susan C; Upadhyay, Abhishek; Chan, Vera B S; Li, Chaoyi; Cusack, Maggie; Yao, Haimin; Yeung, Kelvin W K; Thiyagarajan, Vengatesen (2018): Ocean acidification reduces hardness and stiffness of the Portuguese oyster shell with impaired microstructure: a hierarchical analysis. Biogeosciences, 15(22), 6833-6846
topic_facet Animalia
Benthic animals
Benthos
Bottles or small containers/Aquaria <20 L
Coast and continental shelf
Growth/Morphology
Laboratory experiment
Magallana angulata
Mollusca
North Pacific
Other studied parameter or process
Single species
Temperate
Type
Species
Registration number of species
Uniform resource locator/link to reference
Treatment
Area porosity
Hardness
Stiffness
Density
Volume
pH
pH, standard deviation
Temperature, water
Temperature, water, standard deviation
Salinity
Salinity, standard deviation
Alkalinity, total
Alkalinity, total, standard deviation
Partial pressure of carbon dioxide water at sea surface temperature wet air
Partial pressure of carbon dioxide, standard deviation
Carbonate ion
Carbonate ion, standard deviation
Calcite saturation state
Calcite saturation state, standard deviation
Aragonite saturation state
Aragonite saturation state, standard deviation
Carbonate system computation flag
Carbon dioxide
Fugacity of carbon dioxide water at sea surface temperature wet air
Bicarbonate ion
Carbon, inorganic, dissolved
Experiment
Potentiometric
Potentiometric titration
Calculated using CO2SYS
Calculated using seacarb after Nisumaa et al. 2010
Ocean Acidification International Coordination Centre OA-ICC
description The rapidly intensifying process of ocean acidification (OA) due to anthropogenic CO2 is not only depleting carbonate ions necessary for calcification but also causing acidosis and disrupting internal pH homeostasis in several marine organisms. These negative consequences of OA on marine calcifiers, i.e. oyster species, have been very well documented in recent studies; however, the consequences of reduced or impaired calcification on the end-product, shells or skeletons, still remain one of the major research gaps. Shells produced by marine organisms under OA are expected to show signs of dissolution, disorganized microstructure and reduced mechanical properties. To bridge this knowledge gap and to test the above hypothesis, we investigated the effect of OA on juvenile shells of the commercially important oyster species, Magallana angulata, at ecologically and climatically relevant OA levels (using pH 8.1, 7.8, 7.5, 7.2). In lower pH conditions, a drop of shell hardness and stiffness was revealed by nanoindentation tests, while an evident porous internal microstructure was detected by scanning electron microscopy. Crystallographic orientation, on the other hand, showed no significant difference with decreasing pH using electron back-scattered diffraction (EBSD). These results indicate the porous internal microstructure may be the cause of the reduction in shell hardness and stiffness. The overall decrease of shell density observed from micro-computed tomography analysis indicates the porous internal microstructure may run through the shell, thus inevitably limiting the effectiveness of the shell's defensive function. This study shows the potential deterioration of oyster shells induced by OA, especially in their early life stage. This knowledge is critical to estimate the survival and production of edible oysters in the future ocean. : In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2019) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2019-11-08.
format Dataset
author Meng, Yuan
Guo, Zhenbin
Fitzer, Susan C
Upadhyay, Abhishek
Chan, Vera B S
Li, Chaoyi
Cusack, Maggie
Yao, Haimin
Yeung, Kelvin W K
Thiyagarajan, Vengatesen
author_facet Meng, Yuan
Guo, Zhenbin
Fitzer, Susan C
Upadhyay, Abhishek
Chan, Vera B S
Li, Chaoyi
Cusack, Maggie
Yao, Haimin
Yeung, Kelvin W K
Thiyagarajan, Vengatesen
author_sort Meng, Yuan
title Seawater carbonate chemistry and hardness and stiffness of the Portuguese oyster shell, supplement to: Meng, Yuan; Guo, Zhenbin; Fitzer, Susan C; Upadhyay, Abhishek; Chan, Vera B S; Li, Chaoyi; Cusack, Maggie; Yao, Haimin; Yeung, Kelvin W K; Thiyagarajan, Vengatesen (2018): Ocean acidification reduces hardness and stiffness of the Portuguese oyster shell with impaired microstructure: a hierarchical analysis. Biogeosciences, 15(22), 6833-6846
title_short Seawater carbonate chemistry and hardness and stiffness of the Portuguese oyster shell, supplement to: Meng, Yuan; Guo, Zhenbin; Fitzer, Susan C; Upadhyay, Abhishek; Chan, Vera B S; Li, Chaoyi; Cusack, Maggie; Yao, Haimin; Yeung, Kelvin W K; Thiyagarajan, Vengatesen (2018): Ocean acidification reduces hardness and stiffness of the Portuguese oyster shell with impaired microstructure: a hierarchical analysis. Biogeosciences, 15(22), 6833-6846
title_full Seawater carbonate chemistry and hardness and stiffness of the Portuguese oyster shell, supplement to: Meng, Yuan; Guo, Zhenbin; Fitzer, Susan C; Upadhyay, Abhishek; Chan, Vera B S; Li, Chaoyi; Cusack, Maggie; Yao, Haimin; Yeung, Kelvin W K; Thiyagarajan, Vengatesen (2018): Ocean acidification reduces hardness and stiffness of the Portuguese oyster shell with impaired microstructure: a hierarchical analysis. Biogeosciences, 15(22), 6833-6846
title_fullStr Seawater carbonate chemistry and hardness and stiffness of the Portuguese oyster shell, supplement to: Meng, Yuan; Guo, Zhenbin; Fitzer, Susan C; Upadhyay, Abhishek; Chan, Vera B S; Li, Chaoyi; Cusack, Maggie; Yao, Haimin; Yeung, Kelvin W K; Thiyagarajan, Vengatesen (2018): Ocean acidification reduces hardness and stiffness of the Portuguese oyster shell with impaired microstructure: a hierarchical analysis. Biogeosciences, 15(22), 6833-6846
title_full_unstemmed Seawater carbonate chemistry and hardness and stiffness of the Portuguese oyster shell, supplement to: Meng, Yuan; Guo, Zhenbin; Fitzer, Susan C; Upadhyay, Abhishek; Chan, Vera B S; Li, Chaoyi; Cusack, Maggie; Yao, Haimin; Yeung, Kelvin W K; Thiyagarajan, Vengatesen (2018): Ocean acidification reduces hardness and stiffness of the Portuguese oyster shell with impaired microstructure: a hierarchical analysis. Biogeosciences, 15(22), 6833-6846
title_sort seawater carbonate chemistry and hardness and stiffness of the portuguese oyster shell, supplement to: meng, yuan; guo, zhenbin; fitzer, susan c; upadhyay, abhishek; chan, vera b s; li, chaoyi; cusack, maggie; yao, haimin; yeung, kelvin w k; thiyagarajan, vengatesen (2018): ocean acidification reduces hardness and stiffness of the portuguese oyster shell with impaired microstructure: a hierarchical analysis. biogeosciences, 15(22), 6833-6846
publisher PANGAEA - Data Publisher for Earth & Environmental Science
publishDate 2018
url https://dx.doi.org/10.1594/pangaea.908309
https://doi.pangaea.de/10.1594/PANGAEA.908309
geographic Pacific
geographic_facet Pacific
genre Ocean acidification
genre_facet Ocean acidification
op_relation https://CRAN.R-project.org/package=seacarb
https://dx.doi.org/10.5194/bg-15-6833-2018
https://CRAN.R-project.org/package=seacarb
op_rights Creative Commons Attribution 4.0 International
https://creativecommons.org/licenses/by/4.0/legalcode
cc-by-4.0
op_rightsnorm CC-BY
op_doi https://doi.org/10.1594/pangaea.908309
https://doi.org/10.5194/bg-15-6833-2018
_version_ 1766157534177001472
spelling ftdatacite:10.1594/pangaea.908309 2023-05-15T17:50:40+02:00 Seawater carbonate chemistry and hardness and stiffness of the Portuguese oyster shell, supplement to: Meng, Yuan; Guo, Zhenbin; Fitzer, Susan C; Upadhyay, Abhishek; Chan, Vera B S; Li, Chaoyi; Cusack, Maggie; Yao, Haimin; Yeung, Kelvin W K; Thiyagarajan, Vengatesen (2018): Ocean acidification reduces hardness and stiffness of the Portuguese oyster shell with impaired microstructure: a hierarchical analysis. Biogeosciences, 15(22), 6833-6846 Meng, Yuan Guo, Zhenbin Fitzer, Susan C Upadhyay, Abhishek Chan, Vera B S Li, Chaoyi Cusack, Maggie Yao, Haimin Yeung, Kelvin W K Thiyagarajan, Vengatesen 2018 text/tab-separated-values https://dx.doi.org/10.1594/pangaea.908309 https://doi.pangaea.de/10.1594/PANGAEA.908309 en eng PANGAEA - Data Publisher for Earth & Environmental Science https://CRAN.R-project.org/package=seacarb https://dx.doi.org/10.5194/bg-15-6833-2018 https://CRAN.R-project.org/package=seacarb Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode cc-by-4.0 CC-BY Animalia Benthic animals Benthos Bottles or small containers/Aquaria <20 L Coast and continental shelf Growth/Morphology Laboratory experiment Magallana angulata Mollusca North Pacific Other studied parameter or process Single species Temperate Type Species Registration number of species Uniform resource locator/link to reference Treatment Area porosity Hardness Stiffness Density Volume pH pH, standard deviation Temperature, water Temperature, water, standard deviation Salinity Salinity, standard deviation Alkalinity, total Alkalinity, total, standard deviation Partial pressure of carbon dioxide water at sea surface temperature wet air Partial pressure of carbon dioxide, standard deviation Carbonate ion Carbonate ion, standard deviation Calcite saturation state Calcite saturation state, standard deviation Aragonite saturation state Aragonite saturation state, standard deviation Carbonate system computation flag Carbon dioxide Fugacity of carbon dioxide water at sea surface temperature wet air Bicarbonate ion Carbon, inorganic, dissolved Experiment Potentiometric Potentiometric titration Calculated using CO2SYS Calculated using seacarb after Nisumaa et al. 2010 Ocean Acidification International Coordination Centre OA-ICC Supplementary Dataset dataset Dataset 2018 ftdatacite https://doi.org/10.1594/pangaea.908309 https://doi.org/10.5194/bg-15-6833-2018 2021-11-05T12:55:41Z The rapidly intensifying process of ocean acidification (OA) due to anthropogenic CO2 is not only depleting carbonate ions necessary for calcification but also causing acidosis and disrupting internal pH homeostasis in several marine organisms. These negative consequences of OA on marine calcifiers, i.e. oyster species, have been very well documented in recent studies; however, the consequences of reduced or impaired calcification on the end-product, shells or skeletons, still remain one of the major research gaps. Shells produced by marine organisms under OA are expected to show signs of dissolution, disorganized microstructure and reduced mechanical properties. To bridge this knowledge gap and to test the above hypothesis, we investigated the effect of OA on juvenile shells of the commercially important oyster species, Magallana angulata, at ecologically and climatically relevant OA levels (using pH 8.1, 7.8, 7.5, 7.2). In lower pH conditions, a drop of shell hardness and stiffness was revealed by nanoindentation tests, while an evident porous internal microstructure was detected by scanning electron microscopy. Crystallographic orientation, on the other hand, showed no significant difference with decreasing pH using electron back-scattered diffraction (EBSD). These results indicate the porous internal microstructure may be the cause of the reduction in shell hardness and stiffness. The overall decrease of shell density observed from micro-computed tomography analysis indicates the porous internal microstructure may run through the shell, thus inevitably limiting the effectiveness of the shell's defensive function. This study shows the potential deterioration of oyster shells induced by OA, especially in their early life stage. This knowledge is critical to estimate the survival and production of edible oysters in the future ocean. : In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2019) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2019-11-08. Dataset Ocean acidification DataCite Metadata Store (German National Library of Science and Technology) Pacific