Seawater carbonate chemistry and survival, larval development, shell growth and normal shell development of great scallop (Pecten maximus Lamarck), supplement to: Andersen, Sissel; Grefsrud, E S; Harboe, T (2017): Sensitivity towards elevated pCO2 in great scallop (Pecten maximus Lamarck) embryos and fed larvae. Biogeosciences, 14(3), 529-539

The increasing amount of dissolved anthropogenic CO2 has caused a drop in pH values in the open ocean known as ocean acidification. This change in seawater carbonate chemistry has been shown to have a negative effect on a number of marine organisms. Early life stages are the most vulnerable, and esp...

Full description

Bibliographic Details
Main Authors: Andersen, Sissel, Grefsrud, E S, Harboe, T
Format: Dataset
Language:English
Published: PANGAEA - Data Publisher for Earth & Environmental Science 2017
Subjects:
pH
Online Access:https://dx.doi.org/10.1594/pangaea.880379
https://doi.pangaea.de/10.1594/PANGAEA.880379
id ftdatacite:10.1594/pangaea.880379
record_format openpolar
institution Open Polar
collection DataCite Metadata Store (German National Library of Science and Technology)
op_collection_id ftdatacite
language English
topic Animalia
Benthic animals
Benthos
Coast and continental shelf
Containers and aquaria 20-1000 L or < 1 m**2
Development
Growth/Morphology
Laboratory experiment
Mollusca
Mortality/Survival
North Atlantic
Pecten maximus
Single species
Temperate
Type
Species
Registration number of species
Uniform resource locator/link to reference
Experiment duration
Time in days
Partial pressure of carbon dioxide water at sea surface temperature wet air
Identification
Survival
Larvae
Replicates
Shell length
Shell length, standard deviation
Salinity
Temperature, water
Alkalinity, total
pH
Bicarbonate ion
Carbonate ion
Carbon dioxide
Aragonite saturation state
Carbonate system computation flag
Fugacity of carbon dioxide water at sea surface temperature wet air
Carbon, inorganic, dissolved
Calcite saturation state
Potentiometric titration
Potentiometric
Calculated using CO2SYS
Calculated using seacarb after Nisumaa et al. 2010
Ocean Acidification International Coordination Centre OA-ICC
spellingShingle Animalia
Benthic animals
Benthos
Coast and continental shelf
Containers and aquaria 20-1000 L or < 1 m**2
Development
Growth/Morphology
Laboratory experiment
Mollusca
Mortality/Survival
North Atlantic
Pecten maximus
Single species
Temperate
Type
Species
Registration number of species
Uniform resource locator/link to reference
Experiment duration
Time in days
Partial pressure of carbon dioxide water at sea surface temperature wet air
Identification
Survival
Larvae
Replicates
Shell length
Shell length, standard deviation
Salinity
Temperature, water
Alkalinity, total
pH
Bicarbonate ion
Carbonate ion
Carbon dioxide
Aragonite saturation state
Carbonate system computation flag
Fugacity of carbon dioxide water at sea surface temperature wet air
Carbon, inorganic, dissolved
Calcite saturation state
Potentiometric titration
Potentiometric
Calculated using CO2SYS
Calculated using seacarb after Nisumaa et al. 2010
Ocean Acidification International Coordination Centre OA-ICC
Andersen, Sissel
Grefsrud, E S
Harboe, T
Seawater carbonate chemistry and survival, larval development, shell growth and normal shell development of great scallop (Pecten maximus Lamarck), supplement to: Andersen, Sissel; Grefsrud, E S; Harboe, T (2017): Sensitivity towards elevated pCO2 in great scallop (Pecten maximus Lamarck) embryos and fed larvae. Biogeosciences, 14(3), 529-539
topic_facet Animalia
Benthic animals
Benthos
Coast and continental shelf
Containers and aquaria 20-1000 L or < 1 m**2
Development
Growth/Morphology
Laboratory experiment
Mollusca
Mortality/Survival
North Atlantic
Pecten maximus
Single species
Temperate
Type
Species
Registration number of species
Uniform resource locator/link to reference
Experiment duration
Time in days
Partial pressure of carbon dioxide water at sea surface temperature wet air
Identification
Survival
Larvae
Replicates
Shell length
Shell length, standard deviation
Salinity
Temperature, water
Alkalinity, total
pH
Bicarbonate ion
Carbonate ion
Carbon dioxide
Aragonite saturation state
Carbonate system computation flag
Fugacity of carbon dioxide water at sea surface temperature wet air
Carbon, inorganic, dissolved
Calcite saturation state
Potentiometric titration
Potentiometric
Calculated using CO2SYS
Calculated using seacarb after Nisumaa et al. 2010
Ocean Acidification International Coordination Centre OA-ICC
description The increasing amount of dissolved anthropogenic CO2 has caused a drop in pH values in the open ocean known as ocean acidification. This change in seawater carbonate chemistry has been shown to have a negative effect on a number of marine organisms. Early life stages are the most vulnerable, and especially the organisms that produce calcified structures in the phylum Mollusca. Few studies have looked at effects on scallops, and this is the first study presented including fed larvae of the great scallop (Pecten maximus) followed until day 14 post-fertilization. Fertilized eggs from unexposed parents were exposed to three levels of pCO2 using four replicate units: 465 (ambient), 768 and 1294 µatm, corresponding to pHNIST of 7.94, 7.75 (-0.19 units) and 7.54 (-0.40 units), respectively. All of the observed parameters were negatively affected by elevated pCO2: survival, larval development, shell growth and normal shell development. The latter was observed to be affected only 2 days after fertilization. Negative effects on the fed larvae at day 7 were similar to what was shown earlier for unfed P. maximus larvae. Growth rate in the group at 768?µatm seemed to decline after day 7, indicating that the ability to overcome the environmental change at moderately elevated pCO2 was lost over time. The present study shows that food availability does not decrease the sensitivity to elevated pCO2 in P. maximus larvae. Unless genetic adaptation and acclimatization counteract the negative effects of long term elevated pCO2, recruitment in populations of P. maximus will most likely be negatively affected by the projected drop of 0.06-0.32 units in pH within year 2100. : In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2016) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2017-08-31.
format Dataset
author Andersen, Sissel
Grefsrud, E S
Harboe, T
author_facet Andersen, Sissel
Grefsrud, E S
Harboe, T
author_sort Andersen, Sissel
title Seawater carbonate chemistry and survival, larval development, shell growth and normal shell development of great scallop (Pecten maximus Lamarck), supplement to: Andersen, Sissel; Grefsrud, E S; Harboe, T (2017): Sensitivity towards elevated pCO2 in great scallop (Pecten maximus Lamarck) embryos and fed larvae. Biogeosciences, 14(3), 529-539
title_short Seawater carbonate chemistry and survival, larval development, shell growth and normal shell development of great scallop (Pecten maximus Lamarck), supplement to: Andersen, Sissel; Grefsrud, E S; Harboe, T (2017): Sensitivity towards elevated pCO2 in great scallop (Pecten maximus Lamarck) embryos and fed larvae. Biogeosciences, 14(3), 529-539
title_full Seawater carbonate chemistry and survival, larval development, shell growth and normal shell development of great scallop (Pecten maximus Lamarck), supplement to: Andersen, Sissel; Grefsrud, E S; Harboe, T (2017): Sensitivity towards elevated pCO2 in great scallop (Pecten maximus Lamarck) embryos and fed larvae. Biogeosciences, 14(3), 529-539
title_fullStr Seawater carbonate chemistry and survival, larval development, shell growth and normal shell development of great scallop (Pecten maximus Lamarck), supplement to: Andersen, Sissel; Grefsrud, E S; Harboe, T (2017): Sensitivity towards elevated pCO2 in great scallop (Pecten maximus Lamarck) embryos and fed larvae. Biogeosciences, 14(3), 529-539
title_full_unstemmed Seawater carbonate chemistry and survival, larval development, shell growth and normal shell development of great scallop (Pecten maximus Lamarck), supplement to: Andersen, Sissel; Grefsrud, E S; Harboe, T (2017): Sensitivity towards elevated pCO2 in great scallop (Pecten maximus Lamarck) embryos and fed larvae. Biogeosciences, 14(3), 529-539
title_sort seawater carbonate chemistry and survival, larval development, shell growth and normal shell development of great scallop (pecten maximus lamarck), supplement to: andersen, sissel; grefsrud, e s; harboe, t (2017): sensitivity towards elevated pco2 in great scallop (pecten maximus lamarck) embryos and fed larvae. biogeosciences, 14(3), 529-539
publisher PANGAEA - Data Publisher for Earth & Environmental Science
publishDate 2017
url https://dx.doi.org/10.1594/pangaea.880379
https://doi.pangaea.de/10.1594/PANGAEA.880379
long_lat ENVELOPE(140.027,140.027,-66.666,-66.666)
geographic Lamarck
geographic_facet Lamarck
genre North Atlantic
Ocean acidification
genre_facet North Atlantic
Ocean acidification
op_relation https://cran.r-project.org/package=seacarb
https://dx.doi.org/10.5194/bg-14-529-2017
https://cran.r-project.org/package=seacarb
op_rights Creative Commons Attribution 3.0 Unported
https://creativecommons.org/licenses/by/3.0/legalcode
cc-by-3.0
op_rightsnorm CC-BY
op_doi https://doi.org/10.1594/pangaea.880379
https://doi.org/10.5194/bg-14-529-2017
_version_ 1766137261828603904
spelling ftdatacite:10.1594/pangaea.880379 2023-05-15T17:37:22+02:00 Seawater carbonate chemistry and survival, larval development, shell growth and normal shell development of great scallop (Pecten maximus Lamarck), supplement to: Andersen, Sissel; Grefsrud, E S; Harboe, T (2017): Sensitivity towards elevated pCO2 in great scallop (Pecten maximus Lamarck) embryos and fed larvae. Biogeosciences, 14(3), 529-539 Andersen, Sissel Grefsrud, E S Harboe, T 2017 text/tab-separated-values https://dx.doi.org/10.1594/pangaea.880379 https://doi.pangaea.de/10.1594/PANGAEA.880379 en eng PANGAEA - Data Publisher for Earth & Environmental Science https://cran.r-project.org/package=seacarb https://dx.doi.org/10.5194/bg-14-529-2017 https://cran.r-project.org/package=seacarb Creative Commons Attribution 3.0 Unported https://creativecommons.org/licenses/by/3.0/legalcode cc-by-3.0 CC-BY Animalia Benthic animals Benthos Coast and continental shelf Containers and aquaria 20-1000 L or < 1 m**2 Development Growth/Morphology Laboratory experiment Mollusca Mortality/Survival North Atlantic Pecten maximus Single species Temperate Type Species Registration number of species Uniform resource locator/link to reference Experiment duration Time in days Partial pressure of carbon dioxide water at sea surface temperature wet air Identification Survival Larvae Replicates Shell length Shell length, standard deviation Salinity Temperature, water Alkalinity, total pH Bicarbonate ion Carbonate ion Carbon dioxide Aragonite saturation state Carbonate system computation flag Fugacity of carbon dioxide water at sea surface temperature wet air Carbon, inorganic, dissolved Calcite saturation state Potentiometric titration Potentiometric Calculated using CO2SYS Calculated using seacarb after Nisumaa et al. 2010 Ocean Acidification International Coordination Centre OA-ICC Supplementary Dataset dataset Dataset 2017 ftdatacite https://doi.org/10.1594/pangaea.880379 https://doi.org/10.5194/bg-14-529-2017 2021-11-05T12:55:41Z The increasing amount of dissolved anthropogenic CO2 has caused a drop in pH values in the open ocean known as ocean acidification. This change in seawater carbonate chemistry has been shown to have a negative effect on a number of marine organisms. Early life stages are the most vulnerable, and especially the organisms that produce calcified structures in the phylum Mollusca. Few studies have looked at effects on scallops, and this is the first study presented including fed larvae of the great scallop (Pecten maximus) followed until day 14 post-fertilization. Fertilized eggs from unexposed parents were exposed to three levels of pCO2 using four replicate units: 465 (ambient), 768 and 1294 µatm, corresponding to pHNIST of 7.94, 7.75 (-0.19 units) and 7.54 (-0.40 units), respectively. All of the observed parameters were negatively affected by elevated pCO2: survival, larval development, shell growth and normal shell development. The latter was observed to be affected only 2 days after fertilization. Negative effects on the fed larvae at day 7 were similar to what was shown earlier for unfed P. maximus larvae. Growth rate in the group at 768?µatm seemed to decline after day 7, indicating that the ability to overcome the environmental change at moderately elevated pCO2 was lost over time. The present study shows that food availability does not decrease the sensitivity to elevated pCO2 in P. maximus larvae. Unless genetic adaptation and acclimatization counteract the negative effects of long term elevated pCO2, recruitment in populations of P. maximus will most likely be negatively affected by the projected drop of 0.06-0.32 units in pH within year 2100. : In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2016) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2017-08-31. Dataset North Atlantic Ocean acidification DataCite Metadata Store (German National Library of Science and Technology) Lamarck ENVELOPE(140.027,140.027,-66.666,-66.666)