Circadian clock involvement in zooplankton diel vertical migration, link to supplementary material ...

Genetic clocks are a ubiquitous ancient and adaptive mechanism enabling organisms to anticipate environmental rhythms and to regulate behavioral, physiological and behavioral processes accordingly. Whilst terrestrial circadian clocks are well studied and understood, knowledge about the clock systems...

Full description

Bibliographic Details
Main Authors: Häfker, N Sören, Meyer, Bettina, Last, Kim, Pond, David W, Hüppe, Lukas, Teschke, Mathias
Format: Dataset
Language:English
Published: PANGAEA 2017
Subjects:
Online Access:https://dx.doi.org/10.1594/pangaea.875739
https://doi.pangaea.de/10.1594/PANGAEA.875739
Description
Summary:Genetic clocks are a ubiquitous ancient and adaptive mechanism enabling organisms to anticipate environmental rhythms and to regulate behavioral, physiological and behavioral processes accordingly. Whilst terrestrial circadian clocks are well studied and understood, knowledge about the clock systems in marine organisms is still limited. This is particularly true for abundant species displaying large-scale rhythms like diel vertical migration (DVM) that contribute significantly to shaping their respective ecosystems. Here, we describe endogenous and highly rhythmic patterns in the biology of the ecologically important and highly abundant planktic copepod Calanus finmarchicus. This species shows circadian rhythms of DVM, metabolism, and most core circadian clock genes (clock, period1, period2, timeless, cryptochrome2, clockwork orange) in the laboratory. In the field, copepods from shallow water (0-50m) have more robust rhythmic clock gene oscillations than those caught in deeper water (140-50m). Further, peak ... : Supplement to: Häfker, N Sören; Meyer, Bettina; Last, Kim; Pond, David W; Hüppe, Lukas; Teschke, Mathias (2017): Circadian clock involvement in zooplankton diel vertical migration. Current Biology, 27(14), 2194-2201.e3 ...