Insights fromsodium into the impacts of elevated pCO2 and temperature on bivalve shell formation, supplement to: Zhao, Liqiang; Schöne, Bernd R; Mertz-Kraus, Regina; Yang, Feng (2017): Insights from sodium into the impacts of elevated pCO2 and temperature on bivalve shell formation. Journal of Experimental Marine Biology and Ecology, 486, 148-154

Ocean acidification and warming are predicted to affect the ability of marine bivalves to build their shells, but little is known about the underlying mechanisms. Shell formation is an extremely complex process requiring a detailed understanding of biomineralization processes. Sodium incorporation i...

Full description

Bibliographic Details
Main Authors: Zhao, Liqiang, Schöne, Bernd R, Mertz-Kraus, Regina, Yang, Feng
Format: Dataset
Language:English
Published: PANGAEA - Data Publisher for Earth & Environmental Science 2017
Subjects:
pH
Online Access:https://dx.doi.org/10.1594/pangaea.872396
https://doi.pangaea.de/10.1594/PANGAEA.872396
id ftdatacite:10.1594/pangaea.872396
record_format openpolar
institution Open Polar
collection DataCite Metadata Store (German National Library of Science and Technology)
op_collection_id ftdatacite
language English
topic Animalia
Benthic animals
Benthos
Calcification/Dissolution
Coast and continental shelf
Containers and aquaria 20-1000 L or < 1 m**2
Growth/Morphology
Laboratory experiment
Mollusca
Mytilus edulis
North Pacific
Patinopecten yessoensis
Single species
Temperate
Temperature
Event label
Type
Species
Registration number of species
Uniform resource locator/link to reference
Treatment
Growth rate
Growth rate, standard deviation
Sodium/Calcium ratio
Temperature, water
Temperature, water, standard error
Salinity
Salinity, standard error
pH
pH, standard error
Alkalinity, total
Alkalinity, total, standard error
Partial pressure of carbon dioxide water at sea surface temperature wet air
Partial pressure of carbon dioxide water at sea surface temperature wet air, standard error
Calcite saturation state
Carbonate system computation flag
Carbon dioxide
Fugacity of carbon dioxide water at sea surface temperature wet air
Bicarbonate ion
Carbonate ion
Carbon, inorganic, dissolved
Aragonite saturation state
Experiment
Potentiometric titration
Calculated using CO2SYS
Calculated using seacarb after Nisumaa et al. 2010
Ocean Acidification International Coordination Centre OA-ICC
spellingShingle Animalia
Benthic animals
Benthos
Calcification/Dissolution
Coast and continental shelf
Containers and aquaria 20-1000 L or < 1 m**2
Growth/Morphology
Laboratory experiment
Mollusca
Mytilus edulis
North Pacific
Patinopecten yessoensis
Single species
Temperate
Temperature
Event label
Type
Species
Registration number of species
Uniform resource locator/link to reference
Treatment
Growth rate
Growth rate, standard deviation
Sodium/Calcium ratio
Temperature, water
Temperature, water, standard error
Salinity
Salinity, standard error
pH
pH, standard error
Alkalinity, total
Alkalinity, total, standard error
Partial pressure of carbon dioxide water at sea surface temperature wet air
Partial pressure of carbon dioxide water at sea surface temperature wet air, standard error
Calcite saturation state
Carbonate system computation flag
Carbon dioxide
Fugacity of carbon dioxide water at sea surface temperature wet air
Bicarbonate ion
Carbonate ion
Carbon, inorganic, dissolved
Aragonite saturation state
Experiment
Potentiometric titration
Calculated using CO2SYS
Calculated using seacarb after Nisumaa et al. 2010
Ocean Acidification International Coordination Centre OA-ICC
Zhao, Liqiang
Schöne, Bernd R
Mertz-Kraus, Regina
Yang, Feng
Insights fromsodium into the impacts of elevated pCO2 and temperature on bivalve shell formation, supplement to: Zhao, Liqiang; Schöne, Bernd R; Mertz-Kraus, Regina; Yang, Feng (2017): Insights from sodium into the impacts of elevated pCO2 and temperature on bivalve shell formation. Journal of Experimental Marine Biology and Ecology, 486, 148-154
topic_facet Animalia
Benthic animals
Benthos
Calcification/Dissolution
Coast and continental shelf
Containers and aquaria 20-1000 L or < 1 m**2
Growth/Morphology
Laboratory experiment
Mollusca
Mytilus edulis
North Pacific
Patinopecten yessoensis
Single species
Temperate
Temperature
Event label
Type
Species
Registration number of species
Uniform resource locator/link to reference
Treatment
Growth rate
Growth rate, standard deviation
Sodium/Calcium ratio
Temperature, water
Temperature, water, standard error
Salinity
Salinity, standard error
pH
pH, standard error
Alkalinity, total
Alkalinity, total, standard error
Partial pressure of carbon dioxide water at sea surface temperature wet air
Partial pressure of carbon dioxide water at sea surface temperature wet air, standard error
Calcite saturation state
Carbonate system computation flag
Carbon dioxide
Fugacity of carbon dioxide water at sea surface temperature wet air
Bicarbonate ion
Carbonate ion
Carbon, inorganic, dissolved
Aragonite saturation state
Experiment
Potentiometric titration
Calculated using CO2SYS
Calculated using seacarb after Nisumaa et al. 2010
Ocean Acidification International Coordination Centre OA-ICC
description Ocean acidification and warming are predicted to affect the ability of marine bivalves to build their shells, but little is known about the underlying mechanisms. Shell formation is an extremely complex process requiring a detailed understanding of biomineralization processes. Sodium incorporation into the shells would increase if bivalves rely on the exchange of Na+/H+ to maintain homeostasis for shell formation, thereby shedding new light on the acid-base and ionic regulation at the calcifying front. Here, we investigated the combined effects of seawater pH (8.1, 7.7 and 7.4) and temperature (16 and 22 °C) on the growth and sodium composition of the shells of the blue mussel, Mytilus edulis, and the Yesso scallop, Patinopecten yessoensis. Exposure of M. edulis to low pH (7.7 and 7.4) caused a significant decrease of shell formation, whereas a 6 °C warming significantly depressed the rate of shell growth in P. yessoensis. On the other hand, while the amount of Na incorporated into the shells of P. yessoensis did not increase in acidified seawater, an increase of Na/Cashell with decreasing pH was observed in M. edulis, the latter agreeing well with the aforementioned hypothesis. Moreover, a combined analysis of the shell growth and sodium content provides a more detailed understanding of shell formation processes. Under acidified conditions, mussels may maintain more alkaline conditions favorable for calcification, but a significant decrease of shell formation indicates that the mineralization processes are impaired. The opposite occurs in scallops; virtually unaffected shell growth implies that shell mineralization functions well. Finding of the present study may pave the way for deciphering the mechanisms underlying the impacts of ocean acidification and warming on bivalve shell formation. : In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2016) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation is 2017-02-16.
format Dataset
author Zhao, Liqiang
Schöne, Bernd R
Mertz-Kraus, Regina
Yang, Feng
author_facet Zhao, Liqiang
Schöne, Bernd R
Mertz-Kraus, Regina
Yang, Feng
author_sort Zhao, Liqiang
title Insights fromsodium into the impacts of elevated pCO2 and temperature on bivalve shell formation, supplement to: Zhao, Liqiang; Schöne, Bernd R; Mertz-Kraus, Regina; Yang, Feng (2017): Insights from sodium into the impacts of elevated pCO2 and temperature on bivalve shell formation. Journal of Experimental Marine Biology and Ecology, 486, 148-154
title_short Insights fromsodium into the impacts of elevated pCO2 and temperature on bivalve shell formation, supplement to: Zhao, Liqiang; Schöne, Bernd R; Mertz-Kraus, Regina; Yang, Feng (2017): Insights from sodium into the impacts of elevated pCO2 and temperature on bivalve shell formation. Journal of Experimental Marine Biology and Ecology, 486, 148-154
title_full Insights fromsodium into the impacts of elevated pCO2 and temperature on bivalve shell formation, supplement to: Zhao, Liqiang; Schöne, Bernd R; Mertz-Kraus, Regina; Yang, Feng (2017): Insights from sodium into the impacts of elevated pCO2 and temperature on bivalve shell formation. Journal of Experimental Marine Biology and Ecology, 486, 148-154
title_fullStr Insights fromsodium into the impacts of elevated pCO2 and temperature on bivalve shell formation, supplement to: Zhao, Liqiang; Schöne, Bernd R; Mertz-Kraus, Regina; Yang, Feng (2017): Insights from sodium into the impacts of elevated pCO2 and temperature on bivalve shell formation. Journal of Experimental Marine Biology and Ecology, 486, 148-154
title_full_unstemmed Insights fromsodium into the impacts of elevated pCO2 and temperature on bivalve shell formation, supplement to: Zhao, Liqiang; Schöne, Bernd R; Mertz-Kraus, Regina; Yang, Feng (2017): Insights from sodium into the impacts of elevated pCO2 and temperature on bivalve shell formation. Journal of Experimental Marine Biology and Ecology, 486, 148-154
title_sort insights fromsodium into the impacts of elevated pco2 and temperature on bivalve shell formation, supplement to: zhao, liqiang; schöne, bernd r; mertz-kraus, regina; yang, feng (2017): insights from sodium into the impacts of elevated pco2 and temperature on bivalve shell formation. journal of experimental marine biology and ecology, 486, 148-154
publisher PANGAEA - Data Publisher for Earth & Environmental Science
publishDate 2017
url https://dx.doi.org/10.1594/pangaea.872396
https://doi.pangaea.de/10.1594/PANGAEA.872396
geographic Pacific
geographic_facet Pacific
genre Ocean acidification
genre_facet Ocean acidification
op_relation https://cran.r-project.org/package=seacarb
https://dx.doi.org/10.1016/j.jembe.2016.10.009
https://cran.r-project.org/package=seacarb
op_rights Creative Commons Attribution 3.0 Unported
https://creativecommons.org/licenses/by/3.0/legalcode
CC-BY-3.0
op_rightsnorm CC-BY
op_doi https://doi.org/10.1594/pangaea.872396
https://doi.org/10.1016/j.jembe.2016.10.009
_version_ 1766157531234697216
spelling ftdatacite:10.1594/pangaea.872396 2023-05-15T17:50:40+02:00 Insights fromsodium into the impacts of elevated pCO2 and temperature on bivalve shell formation, supplement to: Zhao, Liqiang; Schöne, Bernd R; Mertz-Kraus, Regina; Yang, Feng (2017): Insights from sodium into the impacts of elevated pCO2 and temperature on bivalve shell formation. Journal of Experimental Marine Biology and Ecology, 486, 148-154 Zhao, Liqiang Schöne, Bernd R Mertz-Kraus, Regina Yang, Feng 2017 text/tab-separated-values https://dx.doi.org/10.1594/pangaea.872396 https://doi.pangaea.de/10.1594/PANGAEA.872396 en eng PANGAEA - Data Publisher for Earth & Environmental Science https://cran.r-project.org/package=seacarb https://dx.doi.org/10.1016/j.jembe.2016.10.009 https://cran.r-project.org/package=seacarb Creative Commons Attribution 3.0 Unported https://creativecommons.org/licenses/by/3.0/legalcode CC-BY-3.0 CC-BY Animalia Benthic animals Benthos Calcification/Dissolution Coast and continental shelf Containers and aquaria 20-1000 L or < 1 m**2 Growth/Morphology Laboratory experiment Mollusca Mytilus edulis North Pacific Patinopecten yessoensis Single species Temperate Temperature Event label Type Species Registration number of species Uniform resource locator/link to reference Treatment Growth rate Growth rate, standard deviation Sodium/Calcium ratio Temperature, water Temperature, water, standard error Salinity Salinity, standard error pH pH, standard error Alkalinity, total Alkalinity, total, standard error Partial pressure of carbon dioxide water at sea surface temperature wet air Partial pressure of carbon dioxide water at sea surface temperature wet air, standard error Calcite saturation state Carbonate system computation flag Carbon dioxide Fugacity of carbon dioxide water at sea surface temperature wet air Bicarbonate ion Carbonate ion Carbon, inorganic, dissolved Aragonite saturation state Experiment Potentiometric titration Calculated using CO2SYS Calculated using seacarb after Nisumaa et al. 2010 Ocean Acidification International Coordination Centre OA-ICC Supplementary Dataset dataset Dataset 2017 ftdatacite https://doi.org/10.1594/pangaea.872396 https://doi.org/10.1016/j.jembe.2016.10.009 2021-11-05T12:55:41Z Ocean acidification and warming are predicted to affect the ability of marine bivalves to build their shells, but little is known about the underlying mechanisms. Shell formation is an extremely complex process requiring a detailed understanding of biomineralization processes. Sodium incorporation into the shells would increase if bivalves rely on the exchange of Na+/H+ to maintain homeostasis for shell formation, thereby shedding new light on the acid-base and ionic regulation at the calcifying front. Here, we investigated the combined effects of seawater pH (8.1, 7.7 and 7.4) and temperature (16 and 22 °C) on the growth and sodium composition of the shells of the blue mussel, Mytilus edulis, and the Yesso scallop, Patinopecten yessoensis. Exposure of M. edulis to low pH (7.7 and 7.4) caused a significant decrease of shell formation, whereas a 6 °C warming significantly depressed the rate of shell growth in P. yessoensis. On the other hand, while the amount of Na incorporated into the shells of P. yessoensis did not increase in acidified seawater, an increase of Na/Cashell with decreasing pH was observed in M. edulis, the latter agreeing well with the aforementioned hypothesis. Moreover, a combined analysis of the shell growth and sodium content provides a more detailed understanding of shell formation processes. Under acidified conditions, mussels may maintain more alkaline conditions favorable for calcification, but a significant decrease of shell formation indicates that the mineralization processes are impaired. The opposite occurs in scallops; virtually unaffected shell growth implies that shell mineralization functions well. Finding of the present study may pave the way for deciphering the mechanisms underlying the impacts of ocean acidification and warming on bivalve shell formation. : In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2016) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation is 2017-02-16. Dataset Ocean acidification DataCite Metadata Store (German National Library of Science and Technology) Pacific