Interannual stability of organic to inorganic carbon production on a coral atoll, supplement to: Kwiatkowski, Lester; Albright, R; Hosfelt, J D; Nebuchina, Yana; Ninokawa, Aaron; Rivlin, Tanya; Sesboüé, Marine; Wolfe, Kennedy; Caldeira, Ken (2016): Interannual stability of organic to inorganic carbon production on a coral atoll. Geophysical Research Letters, 43(8), 3880-3888

Ocean acidification has the potential to adversely affect marine calcifying organisms, with substantial ocean ecosystem impacts projected over the 21st century. Characterizing the in situ sensitivity of calcifying ecosystems to natural variability in carbonate chemistry may improve our understanding...

Full description

Bibliographic Details
Main Authors: Kwiatkowski, Lester, Albright, R, Hosfelt, J D, Nebuchina, Yana, Ninokawa, Aaron, Rivlin, Tanya, Sesboüé, Marine, Wolfe, Kennedy, Caldeira, Ken
Format: Dataset
Language:English
Published: PANGAEA - Data Publisher for Earth & Environmental Science 2016
Subjects:
pH
Online Access:https://dx.doi.org/10.1594/pangaea.869292
https://doi.pangaea.de/10.1594/PANGAEA.869292
Description
Summary:Ocean acidification has the potential to adversely affect marine calcifying organisms, with substantial ocean ecosystem impacts projected over the 21st century. Characterizing the in situ sensitivity of calcifying ecosystems to natural variability in carbonate chemistry may improve our understanding of the long-term impacts of ocean acidification. We explore the potential for intensive temporal sampling to isolate the influence of carbonate chemistry on community calcification rates of a coral reef and compare the ratio of organic to inorganic carbon production to previous studies at the same location. Even with intensive temporal sampling, community calcification displays only a weak dependence on carbonate chemistry variability. However, across three years of sampling, the ratio of organic to inorganic carbon production is highly consistent. Although further work is required to quantify the spatial variability associated with such ratios, this suggests that these measurements have the potential to indicate the response of coral reefs to ongoing disturbance, ocean acidification, and climate change. : In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2016) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation is 2016-12-09.