Stable isotopes and XRF data over the Paleocene-Eocene Thermal Maximum from IODP Sites U1403 and U1409 ...
During the Paleocene-Eocene Thermal Maximum (PETM) about 56 million years ago, thousands of petagrams of carbon were released into the atmosphere and ocean in just a few thousand years, followed by a gradual sequestration over approximately 200,000 years. If silicate weathering is one of the key neg...
Main Authors: | , , , , , , , , , , , |
---|---|
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
PANGAEA
2016
|
Subjects: | |
Online Access: | https://dx.doi.org/10.1594/pangaea.860498 https://doi.pangaea.de/10.1594/PANGAEA.860498 |
Summary: | During the Paleocene-Eocene Thermal Maximum (PETM) about 56 million years ago, thousands of petagrams of carbon were released into the atmosphere and ocean in just a few thousand years, followed by a gradual sequestration over approximately 200,000 years. If silicate weathering is one of the key negative feedbacks that removed this carbon, a period of seawater calcium carbonate saturation greater than pre-event levels is expected during the event's recovery phase. In marine sediments, this should be recorded as a temporary deepening of the depth below which no calcite is preserved - the calcite compensation depth (CCD). Previous and new sedimentary records from sites that were above the pre-PETM calcite compensation depth show enhanced carbonate accumulation following the PETM. A new record from an abyssal site in the North Atlantic that lay below the pre-PETM calcite compensation depth shows a period of carbonate preservation beginning about 70,000 years after the onset of the PETM, providing the first ... : Supplement to: Penman, Donald E; Kirtland Turner, Sandra; Sexton, Philip F; Norris, Richard D; Dickson, Alexander J; Boulila, Slah; Ridgwell, Andy; Zeebe, Richard E; Zachos, James C; Cameron, Adele; Westerhold, Thomas; Röhl, Ursula (2016): An abyssal carbonate compensation depth overshoot in the aftermath of the Paleocene-Eocene Thermal Maximum. Nature Geoscience, 9, 575-580 ... |
---|