Coccolithophore sensitivities to changing carbonate chemistry - an ecological framework ...

Coccolithophores are a group of unicellular phytoplankton species whose ability to calcify has a profound influence on biogeochemical element cycling. Calcification rates are controlled by a large variety of biotic and abiotic factors. Among these factors, carbonate chemistry has gained considerable...

Full description

Bibliographic Details
Main Authors: Bach, Lennart Thomas, Riebesell, Ulf, Gutowska, Magdalena A, Federwisch, Luisa, Schulz, Kai Georg
Format: Article in Journal/Newspaper
Language:English
Published: PANGAEA 2015
Subjects:
Online Access:https://dx.doi.org/10.1594/pangaea.860438
https://doi.pangaea.de/10.1594/PANGAEA.860438
Description
Summary:Coccolithophores are a group of unicellular phytoplankton species whose ability to calcify has a profound influence on biogeochemical element cycling. Calcification rates are controlled by a large variety of biotic and abiotic factors. Among these factors, carbonate chemistry has gained considerable attention during the last years as coccolithophores have been identified to be particularly sensitive to ocean acidification. Despite intense research in this area, a general concept harmonizing the numerous and sometimes (seemingly) contradictory responses of coccolithophores to changing carbonate chemistry is still lacking to date. Here, we present the "substrate-inhibitor concept" which describes the dependence of calcification rates on carbonate chemistry speciation. It is based on observations that calcification rate scales positively with bicarbonate (HCO3-), the primary substrate for calcification, and carbon dioxide (CO2), which can limit cell growth, whereas it is inhibited by protons (H+). This concept ... : Supplement to: Bach, Lennart Thomas; Riebesell, Ulf; Gutowska, Magdalena A; Federwisch, Luisa; Schulz, Kai Georg (2015): A unifying concept of coccolithophore sensitivity to changing carbonate chemistry embedded in an ecological framework. Progress in Oceanography, 135, 125-138 ...