Age models and summer sea surface temperature and winter sea ice concentration for the EPILOG-LGM time slice in the Pacific Southern Ocean ...

Sea surface temperatures and sea-ice extent are the most critical variables to evaluate the Southern Ocean paleoceanographic evolution in relation to the development of the global carbon cycle, atmospheric CO2 variability and ocean-atmosphere circulation. In contrast to the Atlantic and the Indian s...

Full description

Bibliographic Details
Main Authors: Benz, Verena, Esper, Oliver, Gersonde, Rainer, Lamy, Frank, Tiedemann, Ralf
Format: Article in Journal/Newspaper
Language:English
Published: PANGAEA 2016
Subjects:
Online Access:https://dx.doi.org/10.1594/pangaea.849115
https://doi.pangaea.de/10.1594/PANGAEA.849115
Description
Summary:Sea surface temperatures and sea-ice extent are the most critical variables to evaluate the Southern Ocean paleoceanographic evolution in relation to the development of the global carbon cycle, atmospheric CO2 variability and ocean-atmosphere circulation. In contrast to the Atlantic and the Indian sectors, the Pacific sector of the Southern Ocean has been insufficiently investigated so far. To cover this gap of information we present diatom-based estimates of summer sea surface temperature (SSST) and winter sea-ice concentration (WSI) from 17 sites in the polar South Pacific to study the Last Glacial Maximum (LGM) at the EPILOG time slice (19,000-23,000 cal. years BP). Applied statistical methods are the Imbrie and Kipp Method (IKM) and the Modern Analog Technique (MAT) to estimate temperature and sea-ice concentration, respectively. Our data display a distinct LGM east-west differentiation in SSST and WSI with steeper latitudinal temperature gradients and a winter sea-ice edge located consistently north of ... : Supplement to: Benz, Verena; Esper, Oliver; Gersonde, Rainer; Lamy, Frank; Tiedemann, Ralf (2016): Last Glacial Maximum sea surface temperature and sea-ice extent in the Pacific sector of the Southern Ocean. Quaternary Science Reviews, 146, 216-237 ...