Effects of ocean acidification on learning in coral reef fishes, supplement to: Ferrari, Maud C O; Manassa, Rachel; Dixson, Danielle L; Munday, Philip L; McCormick, Mark I; Meekan, Mark; Sihler, H; Chivers, Douglas P (2012): Effects of ocean acidification on learning in coral reef fishes. PLoS ONE, 7(2), e31478

Ocean acidification has the potential to cause dramatic changes in marine ecosystems. Larval damselfish exposed to concentrations of CO2 predicted to occur in the mid- to late-century show maladaptive responses to predator cues. However, there is considerable variation both within and between specie...

Full description

Bibliographic Details
Main Authors: Ferrari, Maud C O, Manassa, Rachel, Dixson, Danielle L, Munday, Philip L, McCormick, Mark I, Meekan, Mark, Sihler, H, Chivers, Douglas P
Format: Dataset
Language:English
Published: PANGAEA - Data Publisher for Earth & Environmental Science 2012
Subjects:
pH
Online Access:https://dx.doi.org/10.1594/pangaea.848085
https://doi.pangaea.de/10.1594/PANGAEA.848085
id ftdatacite:10.1594/pangaea.848085
record_format openpolar
institution Open Polar
collection DataCite Metadata Store (German National Library of Science and Technology)
op_collection_id ftdatacite
language English
topic Animalia
Behaviour
Chordata
Coast and continental shelf
Containers and aquaria 20-1000 L or < 1 m**2
Laboratory experiment
Nekton
Pelagos
Pomacentrus amboinensis
Single species
South Pacific
Tropical
Figure
Species
Treatment
Group
Experimental treatment
Change
Change, standard error
pH
pH, standard error
Temperature, water
Temperature, water, standard error
Salinity
Alkalinity, total
Alkalinity, total, standard error
Partial pressure of carbon dioxide water at sea surface temperature wet air
Partial pressure of carbon dioxide water at sea surface temperature wet air, standard error
Carbonate system computation flag
Carbon dioxide
Fugacity of carbon dioxide water at sea surface temperature wet air
Bicarbonate ion
Carbonate ion
Carbon, inorganic, dissolved
Aragonite saturation state
Calcite saturation state
Experiment
Potentiometric
Potentiometric titration
Calculated using CO2SYS
Calculated using seacarb after Nisumaa et al. 2010
Ocean Acidification International Coordination Centre OA-ICC
spellingShingle Animalia
Behaviour
Chordata
Coast and continental shelf
Containers and aquaria 20-1000 L or < 1 m**2
Laboratory experiment
Nekton
Pelagos
Pomacentrus amboinensis
Single species
South Pacific
Tropical
Figure
Species
Treatment
Group
Experimental treatment
Change
Change, standard error
pH
pH, standard error
Temperature, water
Temperature, water, standard error
Salinity
Alkalinity, total
Alkalinity, total, standard error
Partial pressure of carbon dioxide water at sea surface temperature wet air
Partial pressure of carbon dioxide water at sea surface temperature wet air, standard error
Carbonate system computation flag
Carbon dioxide
Fugacity of carbon dioxide water at sea surface temperature wet air
Bicarbonate ion
Carbonate ion
Carbon, inorganic, dissolved
Aragonite saturation state
Calcite saturation state
Experiment
Potentiometric
Potentiometric titration
Calculated using CO2SYS
Calculated using seacarb after Nisumaa et al. 2010
Ocean Acidification International Coordination Centre OA-ICC
Ferrari, Maud C O
Manassa, Rachel
Dixson, Danielle L
Munday, Philip L
McCormick, Mark I
Meekan, Mark
Sihler, H
Chivers, Douglas P
Effects of ocean acidification on learning in coral reef fishes, supplement to: Ferrari, Maud C O; Manassa, Rachel; Dixson, Danielle L; Munday, Philip L; McCormick, Mark I; Meekan, Mark; Sihler, H; Chivers, Douglas P (2012): Effects of ocean acidification on learning in coral reef fishes. PLoS ONE, 7(2), e31478
topic_facet Animalia
Behaviour
Chordata
Coast and continental shelf
Containers and aquaria 20-1000 L or < 1 m**2
Laboratory experiment
Nekton
Pelagos
Pomacentrus amboinensis
Single species
South Pacific
Tropical
Figure
Species
Treatment
Group
Experimental treatment
Change
Change, standard error
pH
pH, standard error
Temperature, water
Temperature, water, standard error
Salinity
Alkalinity, total
Alkalinity, total, standard error
Partial pressure of carbon dioxide water at sea surface temperature wet air
Partial pressure of carbon dioxide water at sea surface temperature wet air, standard error
Carbonate system computation flag
Carbon dioxide
Fugacity of carbon dioxide water at sea surface temperature wet air
Bicarbonate ion
Carbonate ion
Carbon, inorganic, dissolved
Aragonite saturation state
Calcite saturation state
Experiment
Potentiometric
Potentiometric titration
Calculated using CO2SYS
Calculated using seacarb after Nisumaa et al. 2010
Ocean Acidification International Coordination Centre OA-ICC
description Ocean acidification has the potential to cause dramatic changes in marine ecosystems. Larval damselfish exposed to concentrations of CO2 predicted to occur in the mid- to late-century show maladaptive responses to predator cues. However, there is considerable variation both within and between species in CO2 effects, whereby some individuals are unaffected at particular CO2 concentrations while others show maladaptive responses to predator odour. Our goal was to test whether learning via chemical or visual information would be impaired by ocean acidification and ultimately, whether learning can mitigate the effects of ocean acidification by restoring the appropriate responses of prey to predators. Using two highly efficient and widespread mechanisms for predator learning, we compared the behaviour of pre-settlement damselfish Pomacentrus amboinensis that were exposed to 440 µatm CO2 (current day levels) or 850 µatm CO2, a concentration predicted to occur in the ocean before the end of this century. We found that, regardless of the method of learning, damselfish exposed to elevated CO2 failed to learn to respond appropriately to a common predator, the dottyback, Pseudochromis fuscus. To determine whether the lack of response was due to a failure in learning or rather a short-term shift in trade-offs preventing the fish from displaying overt antipredator responses, we conditioned 440 or 700 µatm-CO2 fish to learn to recognize a dottyback as a predator using injured conspecific cues, as in Experiment 1. When tested one day post-conditioning, CO2 exposed fish failed to respond to predator odour. When tested 5 days post-conditioning, CO2 exposed fish still failed to show an antipredator response to the dottyback odour, despite the fact that both control and CO2-treated fish responded to a general risk cue (injured conspecific cues). These results indicate that exposure to CO2 may alter the cognitive ability of juvenile fish and render learning ineffective. : In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2015) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation is 2015-07-09.
format Dataset
author Ferrari, Maud C O
Manassa, Rachel
Dixson, Danielle L
Munday, Philip L
McCormick, Mark I
Meekan, Mark
Sihler, H
Chivers, Douglas P
author_facet Ferrari, Maud C O
Manassa, Rachel
Dixson, Danielle L
Munday, Philip L
McCormick, Mark I
Meekan, Mark
Sihler, H
Chivers, Douglas P
author_sort Ferrari, Maud C O
title Effects of ocean acidification on learning in coral reef fishes, supplement to: Ferrari, Maud C O; Manassa, Rachel; Dixson, Danielle L; Munday, Philip L; McCormick, Mark I; Meekan, Mark; Sihler, H; Chivers, Douglas P (2012): Effects of ocean acidification on learning in coral reef fishes. PLoS ONE, 7(2), e31478
title_short Effects of ocean acidification on learning in coral reef fishes, supplement to: Ferrari, Maud C O; Manassa, Rachel; Dixson, Danielle L; Munday, Philip L; McCormick, Mark I; Meekan, Mark; Sihler, H; Chivers, Douglas P (2012): Effects of ocean acidification on learning in coral reef fishes. PLoS ONE, 7(2), e31478
title_full Effects of ocean acidification on learning in coral reef fishes, supplement to: Ferrari, Maud C O; Manassa, Rachel; Dixson, Danielle L; Munday, Philip L; McCormick, Mark I; Meekan, Mark; Sihler, H; Chivers, Douglas P (2012): Effects of ocean acidification on learning in coral reef fishes. PLoS ONE, 7(2), e31478
title_fullStr Effects of ocean acidification on learning in coral reef fishes, supplement to: Ferrari, Maud C O; Manassa, Rachel; Dixson, Danielle L; Munday, Philip L; McCormick, Mark I; Meekan, Mark; Sihler, H; Chivers, Douglas P (2012): Effects of ocean acidification on learning in coral reef fishes. PLoS ONE, 7(2), e31478
title_full_unstemmed Effects of ocean acidification on learning in coral reef fishes, supplement to: Ferrari, Maud C O; Manassa, Rachel; Dixson, Danielle L; Munday, Philip L; McCormick, Mark I; Meekan, Mark; Sihler, H; Chivers, Douglas P (2012): Effects of ocean acidification on learning in coral reef fishes. PLoS ONE, 7(2), e31478
title_sort effects of ocean acidification on learning in coral reef fishes, supplement to: ferrari, maud c o; manassa, rachel; dixson, danielle l; munday, philip l; mccormick, mark i; meekan, mark; sihler, h; chivers, douglas p (2012): effects of ocean acidification on learning in coral reef fishes. plos one, 7(2), e31478
publisher PANGAEA - Data Publisher for Earth & Environmental Science
publishDate 2012
url https://dx.doi.org/10.1594/pangaea.848085
https://doi.pangaea.de/10.1594/PANGAEA.848085
long_lat ENVELOPE(170.967,170.967,-71.833,-71.833)
ENVELOPE(161.433,161.433,-82.533,-82.533)
geographic Pacific
McCormick
Chivers
geographic_facet Pacific
McCormick
Chivers
genre Ocean acidification
genre_facet Ocean acidification
op_relation https://cran.r-project.org/package=seacarb
https://dx.doi.org/10.1371/journal.pone.0031478
https://cran.r-project.org/package=seacarb
op_rights Creative Commons Attribution 3.0 Unported
https://creativecommons.org/licenses/by/3.0/legalcode
cc-by-3.0
op_rightsnorm CC-BY
op_doi https://doi.org/10.1594/pangaea.848085
https://doi.org/10.1371/journal.pone.0031478
_version_ 1766156394448289792
spelling ftdatacite:10.1594/pangaea.848085 2023-05-15T17:49:53+02:00 Effects of ocean acidification on learning in coral reef fishes, supplement to: Ferrari, Maud C O; Manassa, Rachel; Dixson, Danielle L; Munday, Philip L; McCormick, Mark I; Meekan, Mark; Sihler, H; Chivers, Douglas P (2012): Effects of ocean acidification on learning in coral reef fishes. PLoS ONE, 7(2), e31478 Ferrari, Maud C O Manassa, Rachel Dixson, Danielle L Munday, Philip L McCormick, Mark I Meekan, Mark Sihler, H Chivers, Douglas P 2012 text/tab-separated-values https://dx.doi.org/10.1594/pangaea.848085 https://doi.pangaea.de/10.1594/PANGAEA.848085 en eng PANGAEA - Data Publisher for Earth & Environmental Science https://cran.r-project.org/package=seacarb https://dx.doi.org/10.1371/journal.pone.0031478 https://cran.r-project.org/package=seacarb Creative Commons Attribution 3.0 Unported https://creativecommons.org/licenses/by/3.0/legalcode cc-by-3.0 CC-BY Animalia Behaviour Chordata Coast and continental shelf Containers and aquaria 20-1000 L or < 1 m**2 Laboratory experiment Nekton Pelagos Pomacentrus amboinensis Single species South Pacific Tropical Figure Species Treatment Group Experimental treatment Change Change, standard error pH pH, standard error Temperature, water Temperature, water, standard error Salinity Alkalinity, total Alkalinity, total, standard error Partial pressure of carbon dioxide water at sea surface temperature wet air Partial pressure of carbon dioxide water at sea surface temperature wet air, standard error Carbonate system computation flag Carbon dioxide Fugacity of carbon dioxide water at sea surface temperature wet air Bicarbonate ion Carbonate ion Carbon, inorganic, dissolved Aragonite saturation state Calcite saturation state Experiment Potentiometric Potentiometric titration Calculated using CO2SYS Calculated using seacarb after Nisumaa et al. 2010 Ocean Acidification International Coordination Centre OA-ICC Supplementary Dataset dataset Dataset 2012 ftdatacite https://doi.org/10.1594/pangaea.848085 https://doi.org/10.1371/journal.pone.0031478 2021-11-05T12:55:41Z Ocean acidification has the potential to cause dramatic changes in marine ecosystems. Larval damselfish exposed to concentrations of CO2 predicted to occur in the mid- to late-century show maladaptive responses to predator cues. However, there is considerable variation both within and between species in CO2 effects, whereby some individuals are unaffected at particular CO2 concentrations while others show maladaptive responses to predator odour. Our goal was to test whether learning via chemical or visual information would be impaired by ocean acidification and ultimately, whether learning can mitigate the effects of ocean acidification by restoring the appropriate responses of prey to predators. Using two highly efficient and widespread mechanisms for predator learning, we compared the behaviour of pre-settlement damselfish Pomacentrus amboinensis that were exposed to 440 µatm CO2 (current day levels) or 850 µatm CO2, a concentration predicted to occur in the ocean before the end of this century. We found that, regardless of the method of learning, damselfish exposed to elevated CO2 failed to learn to respond appropriately to a common predator, the dottyback, Pseudochromis fuscus. To determine whether the lack of response was due to a failure in learning or rather a short-term shift in trade-offs preventing the fish from displaying overt antipredator responses, we conditioned 440 or 700 µatm-CO2 fish to learn to recognize a dottyback as a predator using injured conspecific cues, as in Experiment 1. When tested one day post-conditioning, CO2 exposed fish failed to respond to predator odour. When tested 5 days post-conditioning, CO2 exposed fish still failed to show an antipredator response to the dottyback odour, despite the fact that both control and CO2-treated fish responded to a general risk cue (injured conspecific cues). These results indicate that exposure to CO2 may alter the cognitive ability of juvenile fish and render learning ineffective. : In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2015) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation is 2015-07-09. Dataset Ocean acidification DataCite Metadata Store (German National Library of Science and Technology) Pacific McCormick ENVELOPE(170.967,170.967,-71.833,-71.833) Chivers ENVELOPE(161.433,161.433,-82.533,-82.533)