Responses of the tropical gorgonian coral Eunicea fusca to ocean acidification conditions, supplement to: Gómez, C E; Paul, V J; Ritson-Williams, R; Muehllehner, Nancy; Langdon, Chris; Sánchez, J A (2014): Responses of the tropical gorgonian coral Eunicea fusca to ocean acidification conditions. Coral Reefs, 34(2), 451-460

Ocean acidification can have negative repercussions from the organism to ecosystem levels. Octocorals deposit high-magnesium calcite in their skeletons, and according to different models, they could be more susceptible to the depletion of carbonate ions than either calcite or aragonite-depositing or...

Full description

Bibliographic Details
Main Authors: Gómez, C E, Paul, V J, Ritson-Williams, R, Muehllehner, Nancy, Langdon, Chris, Sánchez, J A
Format: Dataset
Language:English
Published: PANGAEA - Data Publisher for Earth & Environmental Science 2015
Subjects:
pH
Online Access:https://dx.doi.org/10.1594/pangaea.847831
https://doi.pangaea.de/10.1594/PANGAEA.847831
id ftdatacite:10.1594/pangaea.847831
record_format openpolar
institution Open Polar
collection DataCite Metadata Store (German National Library of Science and Technology)
op_collection_id ftdatacite
language English
topic Animalia
Benthic animals
Benthos
Calcification/Dissolution
Cnidaria
Coast and continental shelf
Containers and aquaria 20-1000 L or < 1 m**2
Eunicea fusca
Growth/Morphology
Laboratory experiment
North Atlantic
Single species
Temperate
Species
Replicates
Growth rate
Growth rate, standard error
Mass change
Mass change, standard error
Calcein
Calcein, standard error
Salinity
Temperature, water
Identification
Alkalinity, total
Alkalinity, total, standard deviation
pH
pH, standard deviation
Partial pressure of carbon dioxide water at sea surface temperature wet air
Partial pressure of carbon dioxide, standard deviation
Bicarbonate ion
Bicarbonate ion, standard deviation
Carbonate ion
Carbonate ion, standard deviation
Calcite saturation state
Calcite saturation state, standard deviation
Aragonite saturation state
Aragonite saturation state, standard deviation
Carbonate system computation flag
Carbon dioxide
Fugacity of carbon dioxide water at sea surface temperature wet air
Carbon, inorganic, dissolved
Experiment
Potentiometric titration
Potentiometric
Calculated using CO2SYS
Calculated using seacarb after Nisumaa et al. 2010
Ocean Acidification International Coordination Centre OA-ICC
spellingShingle Animalia
Benthic animals
Benthos
Calcification/Dissolution
Cnidaria
Coast and continental shelf
Containers and aquaria 20-1000 L or < 1 m**2
Eunicea fusca
Growth/Morphology
Laboratory experiment
North Atlantic
Single species
Temperate
Species
Replicates
Growth rate
Growth rate, standard error
Mass change
Mass change, standard error
Calcein
Calcein, standard error
Salinity
Temperature, water
Identification
Alkalinity, total
Alkalinity, total, standard deviation
pH
pH, standard deviation
Partial pressure of carbon dioxide water at sea surface temperature wet air
Partial pressure of carbon dioxide, standard deviation
Bicarbonate ion
Bicarbonate ion, standard deviation
Carbonate ion
Carbonate ion, standard deviation
Calcite saturation state
Calcite saturation state, standard deviation
Aragonite saturation state
Aragonite saturation state, standard deviation
Carbonate system computation flag
Carbon dioxide
Fugacity of carbon dioxide water at sea surface temperature wet air
Carbon, inorganic, dissolved
Experiment
Potentiometric titration
Potentiometric
Calculated using CO2SYS
Calculated using seacarb after Nisumaa et al. 2010
Ocean Acidification International Coordination Centre OA-ICC
Gómez, C E
Paul, V J
Ritson-Williams, R
Muehllehner, Nancy
Langdon, Chris
Sánchez, J A
Responses of the tropical gorgonian coral Eunicea fusca to ocean acidification conditions, supplement to: Gómez, C E; Paul, V J; Ritson-Williams, R; Muehllehner, Nancy; Langdon, Chris; Sánchez, J A (2014): Responses of the tropical gorgonian coral Eunicea fusca to ocean acidification conditions. Coral Reefs, 34(2), 451-460
topic_facet Animalia
Benthic animals
Benthos
Calcification/Dissolution
Cnidaria
Coast and continental shelf
Containers and aquaria 20-1000 L or < 1 m**2
Eunicea fusca
Growth/Morphology
Laboratory experiment
North Atlantic
Single species
Temperate
Species
Replicates
Growth rate
Growth rate, standard error
Mass change
Mass change, standard error
Calcein
Calcein, standard error
Salinity
Temperature, water
Identification
Alkalinity, total
Alkalinity, total, standard deviation
pH
pH, standard deviation
Partial pressure of carbon dioxide water at sea surface temperature wet air
Partial pressure of carbon dioxide, standard deviation
Bicarbonate ion
Bicarbonate ion, standard deviation
Carbonate ion
Carbonate ion, standard deviation
Calcite saturation state
Calcite saturation state, standard deviation
Aragonite saturation state
Aragonite saturation state, standard deviation
Carbonate system computation flag
Carbon dioxide
Fugacity of carbon dioxide water at sea surface temperature wet air
Carbon, inorganic, dissolved
Experiment
Potentiometric titration
Potentiometric
Calculated using CO2SYS
Calculated using seacarb after Nisumaa et al. 2010
Ocean Acidification International Coordination Centre OA-ICC
description Ocean acidification can have negative repercussions from the organism to ecosystem levels. Octocorals deposit high-magnesium calcite in their skeletons, and according to different models, they could be more susceptible to the depletion of carbonate ions than either calcite or aragonite-depositing organisms. This study investigated the response of the gorgonian coral Eunicea fusca to a range of CO2 concentrations from 285 to 4,568 ppm (pH range 8.1-7.1) over a 4-week period. Gorgonian growth and calcification were measured at each level of CO2 as linear extension rate and percent change in buoyant weight and calcein incorporation in individual sclerites, respectively. There was a significant negative relationship for calcification and CO2 concentration that was well explained by a linear model regression analysis for both buoyant weight and calcein staining. In general, growth and calcification did not stop in any of the concentrations of pCO2; however, some of the octocoral fragments experienced negative calcification at undersaturated levels of calcium carbonate (>4,500 ppm) suggesting possible dissolution effects. These results highlight the susceptibility of the gorgonian coral E. fusca to elevated levels of carbon dioxide but suggest that E. fusca could still survive well in mid-term ocean acidification conditions expected by the end of this century, which provides important information on the effects of ocean acidification on the dynamics of coral reef communities. Gorgonian corals can be expected to diversify and thrive in the Atlantic-Eastern Pacific; as scleractinian corals decline, it is likely to expect a shift in these reef communities from scleractinian coral dominated to octocoral/soft coral dominated under a "business as usual" scenario of CO2 emissions. : In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2015) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation is 2015-07-03.
format Dataset
author Gómez, C E
Paul, V J
Ritson-Williams, R
Muehllehner, Nancy
Langdon, Chris
Sánchez, J A
author_facet Gómez, C E
Paul, V J
Ritson-Williams, R
Muehllehner, Nancy
Langdon, Chris
Sánchez, J A
author_sort Gómez, C E
title Responses of the tropical gorgonian coral Eunicea fusca to ocean acidification conditions, supplement to: Gómez, C E; Paul, V J; Ritson-Williams, R; Muehllehner, Nancy; Langdon, Chris; Sánchez, J A (2014): Responses of the tropical gorgonian coral Eunicea fusca to ocean acidification conditions. Coral Reefs, 34(2), 451-460
title_short Responses of the tropical gorgonian coral Eunicea fusca to ocean acidification conditions, supplement to: Gómez, C E; Paul, V J; Ritson-Williams, R; Muehllehner, Nancy; Langdon, Chris; Sánchez, J A (2014): Responses of the tropical gorgonian coral Eunicea fusca to ocean acidification conditions. Coral Reefs, 34(2), 451-460
title_full Responses of the tropical gorgonian coral Eunicea fusca to ocean acidification conditions, supplement to: Gómez, C E; Paul, V J; Ritson-Williams, R; Muehllehner, Nancy; Langdon, Chris; Sánchez, J A (2014): Responses of the tropical gorgonian coral Eunicea fusca to ocean acidification conditions. Coral Reefs, 34(2), 451-460
title_fullStr Responses of the tropical gorgonian coral Eunicea fusca to ocean acidification conditions, supplement to: Gómez, C E; Paul, V J; Ritson-Williams, R; Muehllehner, Nancy; Langdon, Chris; Sánchez, J A (2014): Responses of the tropical gorgonian coral Eunicea fusca to ocean acidification conditions. Coral Reefs, 34(2), 451-460
title_full_unstemmed Responses of the tropical gorgonian coral Eunicea fusca to ocean acidification conditions, supplement to: Gómez, C E; Paul, V J; Ritson-Williams, R; Muehllehner, Nancy; Langdon, Chris; Sánchez, J A (2014): Responses of the tropical gorgonian coral Eunicea fusca to ocean acidification conditions. Coral Reefs, 34(2), 451-460
title_sort responses of the tropical gorgonian coral eunicea fusca to ocean acidification conditions, supplement to: gómez, c e; paul, v j; ritson-williams, r; muehllehner, nancy; langdon, chris; sánchez, j a (2014): responses of the tropical gorgonian coral eunicea fusca to ocean acidification conditions. coral reefs, 34(2), 451-460
publisher PANGAEA - Data Publisher for Earth & Environmental Science
publishDate 2015
url https://dx.doi.org/10.1594/pangaea.847831
https://doi.pangaea.de/10.1594/PANGAEA.847831
geographic Pacific
geographic_facet Pacific
genre North Atlantic
Ocean acidification
genre_facet North Atlantic
Ocean acidification
op_relation https://cran.r-project.org/package=seacarb
https://dx.doi.org/10.1007/s00338-014-1241-3
https://cran.r-project.org/package=seacarb
op_rights Creative Commons Attribution 3.0 Unported
https://creativecommons.org/licenses/by/3.0/legalcode
cc-by-3.0
op_rightsnorm CC-BY
op_doi https://doi.org/10.1594/pangaea.847831
https://doi.org/10.1007/s00338-014-1241-3
_version_ 1766137324446416896
spelling ftdatacite:10.1594/pangaea.847831 2023-05-15T17:37:24+02:00 Responses of the tropical gorgonian coral Eunicea fusca to ocean acidification conditions, supplement to: Gómez, C E; Paul, V J; Ritson-Williams, R; Muehllehner, Nancy; Langdon, Chris; Sánchez, J A (2014): Responses of the tropical gorgonian coral Eunicea fusca to ocean acidification conditions. Coral Reefs, 34(2), 451-460 Gómez, C E Paul, V J Ritson-Williams, R Muehllehner, Nancy Langdon, Chris Sánchez, J A 2015 text/tab-separated-values https://dx.doi.org/10.1594/pangaea.847831 https://doi.pangaea.de/10.1594/PANGAEA.847831 en eng PANGAEA - Data Publisher for Earth & Environmental Science https://cran.r-project.org/package=seacarb https://dx.doi.org/10.1007/s00338-014-1241-3 https://cran.r-project.org/package=seacarb Creative Commons Attribution 3.0 Unported https://creativecommons.org/licenses/by/3.0/legalcode cc-by-3.0 CC-BY Animalia Benthic animals Benthos Calcification/Dissolution Cnidaria Coast and continental shelf Containers and aquaria 20-1000 L or < 1 m**2 Eunicea fusca Growth/Morphology Laboratory experiment North Atlantic Single species Temperate Species Replicates Growth rate Growth rate, standard error Mass change Mass change, standard error Calcein Calcein, standard error Salinity Temperature, water Identification Alkalinity, total Alkalinity, total, standard deviation pH pH, standard deviation Partial pressure of carbon dioxide water at sea surface temperature wet air Partial pressure of carbon dioxide, standard deviation Bicarbonate ion Bicarbonate ion, standard deviation Carbonate ion Carbonate ion, standard deviation Calcite saturation state Calcite saturation state, standard deviation Aragonite saturation state Aragonite saturation state, standard deviation Carbonate system computation flag Carbon dioxide Fugacity of carbon dioxide water at sea surface temperature wet air Carbon, inorganic, dissolved Experiment Potentiometric titration Potentiometric Calculated using CO2SYS Calculated using seacarb after Nisumaa et al. 2010 Ocean Acidification International Coordination Centre OA-ICC Supplementary Dataset dataset Dataset 2015 ftdatacite https://doi.org/10.1594/pangaea.847831 https://doi.org/10.1007/s00338-014-1241-3 2021-11-05T12:55:41Z Ocean acidification can have negative repercussions from the organism to ecosystem levels. Octocorals deposit high-magnesium calcite in their skeletons, and according to different models, they could be more susceptible to the depletion of carbonate ions than either calcite or aragonite-depositing organisms. This study investigated the response of the gorgonian coral Eunicea fusca to a range of CO2 concentrations from 285 to 4,568 ppm (pH range 8.1-7.1) over a 4-week period. Gorgonian growth and calcification were measured at each level of CO2 as linear extension rate and percent change in buoyant weight and calcein incorporation in individual sclerites, respectively. There was a significant negative relationship for calcification and CO2 concentration that was well explained by a linear model regression analysis for both buoyant weight and calcein staining. In general, growth and calcification did not stop in any of the concentrations of pCO2; however, some of the octocoral fragments experienced negative calcification at undersaturated levels of calcium carbonate (>4,500 ppm) suggesting possible dissolution effects. These results highlight the susceptibility of the gorgonian coral E. fusca to elevated levels of carbon dioxide but suggest that E. fusca could still survive well in mid-term ocean acidification conditions expected by the end of this century, which provides important information on the effects of ocean acidification on the dynamics of coral reef communities. Gorgonian corals can be expected to diversify and thrive in the Atlantic-Eastern Pacific; as scleractinian corals decline, it is likely to expect a shift in these reef communities from scleractinian coral dominated to octocoral/soft coral dominated under a "business as usual" scenario of CO2 emissions. : In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2015) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation is 2015-07-03. Dataset North Atlantic Ocean acidification DataCite Metadata Store (German National Library of Science and Technology) Pacific