Age determination using benthic and planktonic foraminifera of central Pacific Ocean sediment cores, supplement to: Broecker, Wallace S; Clark, Elizabeth; Hajdas, Irena; Bonani, Georges (2004): Glacial ventilation rates for the deep Pacific Ocean. Paleoceanography, 19(2), PA2002

A key constraint in attempts to reconstruct the patterns and rates of the ocean's thermohaline circulation during the last glacial period is the difference between the 14C to C ratio in surface and deep water. While imperfect, it is our best index of past deep-sea ventilation rates. In this pap...

Full description

Bibliographic Details
Main Authors: Broecker, Wallace S, Clark, Elizabeth, Hajdas, Irena, Bonani, Georges
Format: Article in Journal/Newspaper
Language:English
Published: PANGAEA - Data Publisher for Earth & Environmental Science 2004
Subjects:
Online Access:https://dx.doi.org/10.1594/pangaea.839747
https://doi.pangaea.de/10.1594/PANGAEA.839747
Description
Summary:A key constraint in attempts to reconstruct the patterns and rates of the ocean's thermohaline circulation during the last glacial period is the difference between the 14C to C ratio in surface and deep water. While imperfect, it is our best index of past deep-sea ventilation rates. In this paper we review published ventilation rate estimates based on the measured radiocarbon age difference between coexisting benthic and planktic foraminifera from glacial-age Pacific sediments. We also present new results from a series of eastern equatorial Pacific sediment cores. The conclusion is that the scatter in these results is so large that the apparent 14C age of glacial deep Pacific water could lie anywhere between double and half today's. Further, it is not clear what is responsible for the wide scatter in the radiocarbon results.