Interactions among chronic and acute impacts on coral recruits: the importance of size-escape thresholds, supplement to: Doropoulos, Christopher; Ward, Selina; Marshell, Alyssa; Diaz-Pulido, Guillermo; Mumby, Peter J (2012): Interactions among chronic and acute impacts on coral recruits: the importance of size-escape thresholds. Ecology, 93(10), 2131-2138
Newly settled recruits typically suffer high mortality from disturbances, but rapid growth reduces their mortality once size-escape thresholds are attained. Ocean acidification (OA) reduces the growth of recruiting benthic invertebrates, yet no direct effects on survivorship have been demonstrated....
Main Authors: | , , , , |
---|---|
Format: | Dataset |
Language: | English |
Published: |
PANGAEA - Data Publisher for Earth & Environmental Science
2012
|
Subjects: | |
Online Access: | https://dx.doi.org/10.1594/pangaea.839180 https://doi.pangaea.de/10.1594/PANGAEA.839180 |
Summary: | Newly settled recruits typically suffer high mortality from disturbances, but rapid growth reduces their mortality once size-escape thresholds are attained. Ocean acidification (OA) reduces the growth of recruiting benthic invertebrates, yet no direct effects on survivorship have been demonstrated. We tested whether the reduced growth of coral recruits caused by OA would increase their mortality by prolonging their vulnerability to an acute disturbance: fish herbivory on surrounding algal turf. After two months' growth in ambient or elevated CO2 levels, the linear extension and calcification of coral (Acropora millepora) recruits decreased as CO2 partial pressure (pCO2) increased. When recruits were subjected to incidental fish grazing, their mortality was inversely size dependent. However, we also found an additive effect of pCO2 such that recruit mortality was higher under elevated pCO2 irrespective of size. Compared to ambient conditions, coral recruits needed to double their size at the highest pCO2 to escape incidental grazing mortality. This general trend was observed with three groups of predators (blenny, surgeonfish, and parrotfish), although the magnitude of the fish treatment varied among species. Our study demonstrates the importance of size-escape thresholds in early recruit survival and how OA can shift these thresholds, potentially intensifying population bottlenecks in benthic invertebrate recruitment. : In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Lavigne et al, 2014) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation is 2014-11-20. |
---|