Detection of a variable intracellular acid-labile carbon pool in Thalassiosira weissflogii (Heterokontophyta) and Emiliania huxleyi (Haptophyta) in response to changes in the seawater carbon system, supplement to: Isensee, Kirsten; Erez, Jonathan; Stoll, Heather M (2014): Detection of a variable intracellular acid-labile carbon pool in Thalassiosira weissflogii(Heterokontophyta) and Emiliania huxleyi (Haptophyta) in response to changes in the seawater carbon system. Physiologia Plantarum, 150(2), 321-338

Accumulation of an intracellular pool of carbon (C(i) pool) is one strategy by which marine algae overcome the low abundance of dissolved CO2 (CO2 (aq) ) in modern seawater. To identify the environmental conditions under which algae accumulate an acid-labile C(i) pool, we applied a (14) C pulse-chas...

Full description

Bibliographic Details
Main Authors: Isensee, Kirsten, Erez, Jonathan, Stoll, Heather M
Format: Dataset
Language:English
Published: PANGAEA - Data Publisher for Earth & Environmental Science 2014
Subjects:
pH
Online Access:https://dx.doi.org/10.1594/pangaea.836733
https://doi.pangaea.de/10.1594/PANGAEA.836733
id ftdatacite:10.1594/pangaea.836733
record_format openpolar
institution Open Polar
collection DataCite Metadata Store (German National Library of Science and Technology)
op_collection_id ftdatacite
language English
topic Biomass/Abundance/Elemental composition
Bottles or small containers/Aquaria <20 L
Chromista
Emiliania huxleyi
Haptophyta
Laboratory experiment
Laboratory strains
Not applicable
Ochrophyta
Other metabolic rates
Pelagos
Phytoplankton
Single species
Thalassiosira weissflogii
Table
Figure
Species
Treatment
pH
Carbon incorporation rate per cell
Temperature, water
Salinity
Alkalinity, total
Carbon, inorganic, dissolved
Carbon dioxide
Partial pressure of carbon dioxide water at sea surface temperature wet air
Cell density
Cell biovolume
Chlorophyll a per cell
Carbon, intracellular pool per cell
Carbon, intracellular pool per cell, standard deviation
Ratio
Time in minutes
Replicate
Carbon-14 incorporation per cell
Time in seconds
Carbon-14, organic
Carbon-14, organic, standard deviation
Carbon dioxide/Bicarbonate uptake ratio
Carbon dioxide/Bicarbonate uptake ratio, standard deviation
Carbonate system computation flag
Fugacity of carbon dioxide water at sea surface temperature wet air
Bicarbonate ion
Carbonate ion
Aragonite saturation state
Calcite saturation state
Potentiometric
Potentiometric titration
Calculated using CO2SYS
Calculated
Calculated using seacarb after Nisumaa et al. 2010
Ocean Acidification International Coordination Centre OA-ICC
spellingShingle Biomass/Abundance/Elemental composition
Bottles or small containers/Aquaria <20 L
Chromista
Emiliania huxleyi
Haptophyta
Laboratory experiment
Laboratory strains
Not applicable
Ochrophyta
Other metabolic rates
Pelagos
Phytoplankton
Single species
Thalassiosira weissflogii
Table
Figure
Species
Treatment
pH
Carbon incorporation rate per cell
Temperature, water
Salinity
Alkalinity, total
Carbon, inorganic, dissolved
Carbon dioxide
Partial pressure of carbon dioxide water at sea surface temperature wet air
Cell density
Cell biovolume
Chlorophyll a per cell
Carbon, intracellular pool per cell
Carbon, intracellular pool per cell, standard deviation
Ratio
Time in minutes
Replicate
Carbon-14 incorporation per cell
Time in seconds
Carbon-14, organic
Carbon-14, organic, standard deviation
Carbon dioxide/Bicarbonate uptake ratio
Carbon dioxide/Bicarbonate uptake ratio, standard deviation
Carbonate system computation flag
Fugacity of carbon dioxide water at sea surface temperature wet air
Bicarbonate ion
Carbonate ion
Aragonite saturation state
Calcite saturation state
Potentiometric
Potentiometric titration
Calculated using CO2SYS
Calculated
Calculated using seacarb after Nisumaa et al. 2010
Ocean Acidification International Coordination Centre OA-ICC
Isensee, Kirsten
Erez, Jonathan
Stoll, Heather M
Detection of a variable intracellular acid-labile carbon pool in Thalassiosira weissflogii (Heterokontophyta) and Emiliania huxleyi (Haptophyta) in response to changes in the seawater carbon system, supplement to: Isensee, Kirsten; Erez, Jonathan; Stoll, Heather M (2014): Detection of a variable intracellular acid-labile carbon pool in Thalassiosira weissflogii(Heterokontophyta) and Emiliania huxleyi (Haptophyta) in response to changes in the seawater carbon system. Physiologia Plantarum, 150(2), 321-338
topic_facet Biomass/Abundance/Elemental composition
Bottles or small containers/Aquaria <20 L
Chromista
Emiliania huxleyi
Haptophyta
Laboratory experiment
Laboratory strains
Not applicable
Ochrophyta
Other metabolic rates
Pelagos
Phytoplankton
Single species
Thalassiosira weissflogii
Table
Figure
Species
Treatment
pH
Carbon incorporation rate per cell
Temperature, water
Salinity
Alkalinity, total
Carbon, inorganic, dissolved
Carbon dioxide
Partial pressure of carbon dioxide water at sea surface temperature wet air
Cell density
Cell biovolume
Chlorophyll a per cell
Carbon, intracellular pool per cell
Carbon, intracellular pool per cell, standard deviation
Ratio
Time in minutes
Replicate
Carbon-14 incorporation per cell
Time in seconds
Carbon-14, organic
Carbon-14, organic, standard deviation
Carbon dioxide/Bicarbonate uptake ratio
Carbon dioxide/Bicarbonate uptake ratio, standard deviation
Carbonate system computation flag
Fugacity of carbon dioxide water at sea surface temperature wet air
Bicarbonate ion
Carbonate ion
Aragonite saturation state
Calcite saturation state
Potentiometric
Potentiometric titration
Calculated using CO2SYS
Calculated
Calculated using seacarb after Nisumaa et al. 2010
Ocean Acidification International Coordination Centre OA-ICC
description Accumulation of an intracellular pool of carbon (C(i) pool) is one strategy by which marine algae overcome the low abundance of dissolved CO2 (CO2 (aq) ) in modern seawater. To identify the environmental conditions under which algae accumulate an acid-labile C(i) pool, we applied a (14) C pulse-chase method, used originally in dinoflagellates, to two new classes of algae, coccolithophorids and diatoms. This method measures the carbon accumulation inside the cells without altering the medium carbon chemistry or culture cell density. We found that the diatom Thalassiosira weissflogii [(Grunow) G. Fryxell & Hasle] and a calcifying strain of the coccolithophorid Emiliania huxleyi [(Lohmann) W. W. Hay & H. P. Mohler] develop significant acid-labile C(i) pools. C(i) pools are measureable in cells cultured in media with 2-30 µmol/l CO2 (aq), corresponding to a medium pH of 8.6-7.9. The absolute C(i) pool was greater for the larger celled diatoms. For both algal classes, the C(i) pool became a negligible contributor to photosynthesis once CO2 (aq) exceeded 30 µmol/l. Combining the (14) C pulse-chase method and (14) C disequilibrium method enabled us to assess whether E. huxleyi and T. weissflogii exhibited thresholds for foregoing accumulation of DIC or reduced the reliance on bicarbonate uptake with increasing CO2 (aq) . We showed that the C(i) pool decreases with higher CO2 :HCO3 (-) uptake rates. : In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Lavigne et al, 2014) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation is 2014-10-15.
format Dataset
author Isensee, Kirsten
Erez, Jonathan
Stoll, Heather M
author_facet Isensee, Kirsten
Erez, Jonathan
Stoll, Heather M
author_sort Isensee, Kirsten
title Detection of a variable intracellular acid-labile carbon pool in Thalassiosira weissflogii (Heterokontophyta) and Emiliania huxleyi (Haptophyta) in response to changes in the seawater carbon system, supplement to: Isensee, Kirsten; Erez, Jonathan; Stoll, Heather M (2014): Detection of a variable intracellular acid-labile carbon pool in Thalassiosira weissflogii(Heterokontophyta) and Emiliania huxleyi (Haptophyta) in response to changes in the seawater carbon system. Physiologia Plantarum, 150(2), 321-338
title_short Detection of a variable intracellular acid-labile carbon pool in Thalassiosira weissflogii (Heterokontophyta) and Emiliania huxleyi (Haptophyta) in response to changes in the seawater carbon system, supplement to: Isensee, Kirsten; Erez, Jonathan; Stoll, Heather M (2014): Detection of a variable intracellular acid-labile carbon pool in Thalassiosira weissflogii(Heterokontophyta) and Emiliania huxleyi (Haptophyta) in response to changes in the seawater carbon system. Physiologia Plantarum, 150(2), 321-338
title_full Detection of a variable intracellular acid-labile carbon pool in Thalassiosira weissflogii (Heterokontophyta) and Emiliania huxleyi (Haptophyta) in response to changes in the seawater carbon system, supplement to: Isensee, Kirsten; Erez, Jonathan; Stoll, Heather M (2014): Detection of a variable intracellular acid-labile carbon pool in Thalassiosira weissflogii(Heterokontophyta) and Emiliania huxleyi (Haptophyta) in response to changes in the seawater carbon system. Physiologia Plantarum, 150(2), 321-338
title_fullStr Detection of a variable intracellular acid-labile carbon pool in Thalassiosira weissflogii (Heterokontophyta) and Emiliania huxleyi (Haptophyta) in response to changes in the seawater carbon system, supplement to: Isensee, Kirsten; Erez, Jonathan; Stoll, Heather M (2014): Detection of a variable intracellular acid-labile carbon pool in Thalassiosira weissflogii(Heterokontophyta) and Emiliania huxleyi (Haptophyta) in response to changes in the seawater carbon system. Physiologia Plantarum, 150(2), 321-338
title_full_unstemmed Detection of a variable intracellular acid-labile carbon pool in Thalassiosira weissflogii (Heterokontophyta) and Emiliania huxleyi (Haptophyta) in response to changes in the seawater carbon system, supplement to: Isensee, Kirsten; Erez, Jonathan; Stoll, Heather M (2014): Detection of a variable intracellular acid-labile carbon pool in Thalassiosira weissflogii(Heterokontophyta) and Emiliania huxleyi (Haptophyta) in response to changes in the seawater carbon system. Physiologia Plantarum, 150(2), 321-338
title_sort detection of a variable intracellular acid-labile carbon pool in thalassiosira weissflogii (heterokontophyta) and emiliania huxleyi (haptophyta) in response to changes in the seawater carbon system, supplement to: isensee, kirsten; erez, jonathan; stoll, heather m (2014): detection of a variable intracellular acid-labile carbon pool in thalassiosira weissflogii(heterokontophyta) and emiliania huxleyi (haptophyta) in response to changes in the seawater carbon system. physiologia plantarum, 150(2), 321-338
publisher PANGAEA - Data Publisher for Earth & Environmental Science
publishDate 2014
url https://dx.doi.org/10.1594/pangaea.836733
https://doi.pangaea.de/10.1594/PANGAEA.836733
long_lat ENVELOPE(163.183,163.183,-77.617,-77.617)
geographic Fryxell
geographic_facet Fryxell
genre Ocean acidification
genre_facet Ocean acidification
op_relation https://cran.r-project.org/package=seacarb
https://dx.doi.org/10.1111/ppl.12096
https://cran.r-project.org/package=seacarb
op_rights Creative Commons Attribution 3.0 Unported
https://creativecommons.org/licenses/by/3.0/legalcode
cc-by-3.0
op_rightsnorm CC-BY
op_doi https://doi.org/10.1594/pangaea.836733
https://doi.org/10.1111/ppl.12096
_version_ 1766158724606459904
spelling ftdatacite:10.1594/pangaea.836733 2023-05-15T17:51:32+02:00 Detection of a variable intracellular acid-labile carbon pool in Thalassiosira weissflogii (Heterokontophyta) and Emiliania huxleyi (Haptophyta) in response to changes in the seawater carbon system, supplement to: Isensee, Kirsten; Erez, Jonathan; Stoll, Heather M (2014): Detection of a variable intracellular acid-labile carbon pool in Thalassiosira weissflogii(Heterokontophyta) and Emiliania huxleyi (Haptophyta) in response to changes in the seawater carbon system. Physiologia Plantarum, 150(2), 321-338 Isensee, Kirsten Erez, Jonathan Stoll, Heather M 2014 text/tab-separated-values https://dx.doi.org/10.1594/pangaea.836733 https://doi.pangaea.de/10.1594/PANGAEA.836733 en eng PANGAEA - Data Publisher for Earth & Environmental Science https://cran.r-project.org/package=seacarb https://dx.doi.org/10.1111/ppl.12096 https://cran.r-project.org/package=seacarb Creative Commons Attribution 3.0 Unported https://creativecommons.org/licenses/by/3.0/legalcode cc-by-3.0 CC-BY Biomass/Abundance/Elemental composition Bottles or small containers/Aquaria <20 L Chromista Emiliania huxleyi Haptophyta Laboratory experiment Laboratory strains Not applicable Ochrophyta Other metabolic rates Pelagos Phytoplankton Single species Thalassiosira weissflogii Table Figure Species Treatment pH Carbon incorporation rate per cell Temperature, water Salinity Alkalinity, total Carbon, inorganic, dissolved Carbon dioxide Partial pressure of carbon dioxide water at sea surface temperature wet air Cell density Cell biovolume Chlorophyll a per cell Carbon, intracellular pool per cell Carbon, intracellular pool per cell, standard deviation Ratio Time in minutes Replicate Carbon-14 incorporation per cell Time in seconds Carbon-14, organic Carbon-14, organic, standard deviation Carbon dioxide/Bicarbonate uptake ratio Carbon dioxide/Bicarbonate uptake ratio, standard deviation Carbonate system computation flag Fugacity of carbon dioxide water at sea surface temperature wet air Bicarbonate ion Carbonate ion Aragonite saturation state Calcite saturation state Potentiometric Potentiometric titration Calculated using CO2SYS Calculated Calculated using seacarb after Nisumaa et al. 2010 Ocean Acidification International Coordination Centre OA-ICC Supplementary Dataset dataset Dataset 2014 ftdatacite https://doi.org/10.1594/pangaea.836733 https://doi.org/10.1111/ppl.12096 2022-02-08T16:27:35Z Accumulation of an intracellular pool of carbon (C(i) pool) is one strategy by which marine algae overcome the low abundance of dissolved CO2 (CO2 (aq) ) in modern seawater. To identify the environmental conditions under which algae accumulate an acid-labile C(i) pool, we applied a (14) C pulse-chase method, used originally in dinoflagellates, to two new classes of algae, coccolithophorids and diatoms. This method measures the carbon accumulation inside the cells without altering the medium carbon chemistry or culture cell density. We found that the diatom Thalassiosira weissflogii [(Grunow) G. Fryxell & Hasle] and a calcifying strain of the coccolithophorid Emiliania huxleyi [(Lohmann) W. W. Hay & H. P. Mohler] develop significant acid-labile C(i) pools. C(i) pools are measureable in cells cultured in media with 2-30 µmol/l CO2 (aq), corresponding to a medium pH of 8.6-7.9. The absolute C(i) pool was greater for the larger celled diatoms. For both algal classes, the C(i) pool became a negligible contributor to photosynthesis once CO2 (aq) exceeded 30 µmol/l. Combining the (14) C pulse-chase method and (14) C disequilibrium method enabled us to assess whether E. huxleyi and T. weissflogii exhibited thresholds for foregoing accumulation of DIC or reduced the reliance on bicarbonate uptake with increasing CO2 (aq) . We showed that the C(i) pool decreases with higher CO2 :HCO3 (-) uptake rates. : In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Lavigne et al, 2014) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation is 2014-10-15. Dataset Ocean acidification DataCite Metadata Store (German National Library of Science and Technology) Fryxell ENVELOPE(163.183,163.183,-77.617,-77.617)