Deep water formation in the North Pacific and deglacial CO2 rise ...

Deep water formation in the North Atlantic and Southern Ocean is widely thought to influence deglacial CO2 rise and climate change; here we suggest that deep water formation in the North Pacific may also play an important role. We present paired radiocarbon and boron isotope data from foraminifera f...

Full description

Bibliographic Details
Main Authors: Rae, James W B, Sarnthein, Michael, Foster, Gavin L, Ridgwell, Andy, Grootes, Pieter Meiert, Elliott, Tim
Format: Article in Journal/Newspaper
Language:English
Published: PANGAEA 2014
Subjects:
Online Access:https://dx.doi.org/10.1594/pangaea.833529
https://doi.pangaea.de/10.1594/PANGAEA.833529
Description
Summary:Deep water formation in the North Atlantic and Southern Ocean is widely thought to influence deglacial CO2 rise and climate change; here we suggest that deep water formation in the North Pacific may also play an important role. We present paired radiocarbon and boron isotope data from foraminifera from sediment core MD02-2489 at 3640 m in the North East Pacific. These show a pronounced excursion during Heinrich Stadial 1, with benthic-planktic radiocarbon offsets dropping to ~350 years, accompanied by a decrease in benthic d11B. We suggest this is driven by the onset of deep convection in the North Pacific, which mixes young shallow waters to depth, old deep waters to the surface, and low-pH water from intermediate depths into the deep ocean. This deep water formation event was likely driven by an increase in surface salinity, due to subdued atmospheric/monsoonal freshwater flux during Heinrich Stadial 1. The ability of North Pacific Deep Water (NPDW) formation to explain the excursions seen in our data is ... : Supplement to: Rae, James W B; Sarnthein, Michael; Foster, Gavin L; Ridgwell, Andy; Grootes, Pieter Meiert; Elliott, Tim (2014): Deep water formation in the North Pacific and deglacial CO2 rise. Paleoceanography, 29(6), 645-667 ...