Experiment: Ultraviolet radiation modulates the physiological responses of the calcified rhodophyte Corallina officinalis to elevated CO2 ...
Ocean acidification reduces the concentration of carbonate ions and increases those of bicarbonate ions in seawater compared with the present oceanic conditions. This altered composition of inorganic carbon species may, by interacting with ultraviolet radiation (UVR), affect the physiology of macroa...
Main Authors: | , , , |
---|---|
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
PANGAEA
2014
|
Subjects: | |
Online Access: | https://dx.doi.org/10.1594/pangaea.831729 https://doi.pangaea.de/10.1594/PANGAEA.831729 |
Summary: | Ocean acidification reduces the concentration of carbonate ions and increases those of bicarbonate ions in seawater compared with the present oceanic conditions. This altered composition of inorganic carbon species may, by interacting with ultraviolet radiation (UVR), affect the physiology of macroalgal species. However, very little is known about how calcareous algae respond to UVR and ocean acidification. Therefore, we conducted an experiment to determine the effects of UVR and ocean acidification on the calcified rhodophyte Corallina officinalis using CO2-enriched cultures with and without UVR exposure. Low pH increased the relative electron transport rates (rETR) but decreased the CaCO3 content and had a miniscule effect on growth. However, UVA (4.25 W m-2) and a moderate level of UVB (0.5 W m-2) increased the rETR and growth rates in C. officinalis, and there was a significant interactive effect of pH and UVR on UVR-absorbing compound concentrations. Thus, at low irradiance, pH and UVR interact in a way ... : Supplement to: Yildiz, Gamse; Hofmann, Laurie C; Bischof, Kai; Dere, Sükran (2013): Ultraviolet radiation modulates the physiological responses of the calcified rhodophyte Corallina officinalis to elevated CO2. Botanica Marina, 56(2), 161-168 ... |
---|