Elevated CO2 affects predator-prey interactions through altered performance, supplement to: Allan, Bridie J M; Domenici, Paolo; McCormick, Mark I; Watson, Sue-Ann; Munday, Philip L (2013): Elevated CO2 Affects Predator-Prey Interactions through Altered Performance. PLoS ONE, 8(3), e58520

Recent research has shown that exposure to elevated carbon dioxide (CO2) affects how fishes perceive their environment, affecting behavioral and cognitive processes leading to increased prey mortality. However, it is unclear if increased mortality results from changes in the dynamics of predator-pre...

Full description

Bibliographic Details
Main Authors: Allan, Bridie J M, Domenici, Paolo, McCormick, Mark I, Watson, Sue-Ann, Munday, Philip L
Format: Dataset
Language:English
Published: PANGAEA - Data Publisher for Earth & Environmental Science 2013
Subjects:
pH
Online Access:https://dx.doi.org/10.1594/pangaea.830803
https://doi.pangaea.de/10.1594/PANGAEA.830803
id ftdatacite:10.1594/pangaea.830803
record_format openpolar
spelling ftdatacite:10.1594/pangaea.830803 2023-05-15T17:51:21+02:00 Elevated CO2 affects predator-prey interactions through altered performance, supplement to: Allan, Bridie J M; Domenici, Paolo; McCormick, Mark I; Watson, Sue-Ann; Munday, Philip L (2013): Elevated CO2 Affects Predator-Prey Interactions through Altered Performance. PLoS ONE, 8(3), e58520 Allan, Bridie J M Domenici, Paolo McCormick, Mark I Watson, Sue-Ann Munday, Philip L 2013 text/tab-separated-values https://dx.doi.org/10.1594/pangaea.830803 https://doi.pangaea.de/10.1594/PANGAEA.830803 en eng PANGAEA - Data Publisher for Earth & Environmental Science https://cran.r-project.org/package=seacarb https://dx.doi.org/10.1371/journal.pone.0058520.t002 https://cran.r-project.org/package=seacarb Creative Commons Attribution 3.0 Unported https://creativecommons.org/licenses/by/3.0/legalcode cc-by-3.0 CC-BY Animalia Behaviour Chordata Coast and continental shelf Containers and aquaria 20-1000 L or < 1 m**2 Laboratory experiment Nekton Pelagos Pomacentrus amboinensis Pseudochromis fuscus South Pacific Species interaction Tropical Species Treatment Predator success Predation rate Predation rate, standard error Distance Distance, standard error Apparent looming threshold Apparent looming threshold, standard error pH pH, standard deviation Temperature, water Temperature, water, standard deviation Salinity Alkalinity, total Alkalinity, total, standard deviation Partial pressure of carbon dioxide water at sea surface temperature wet air Partial pressure of carbon dioxide, standard deviation Carbonate system computation flag Carbon dioxide Fugacity of carbon dioxide water at sea surface temperature wet air Bicarbonate ion Carbonate ion Carbon, inorganic, dissolved Aragonite saturation state Calcite saturation state Potentiometric Potentiometric titration Calculated using CO2SYS Calculated using seacarb after Nisumaa et al. 2010 Ocean Acidification International Coordination Centre OA-ICC Supplementary Dataset dataset Dataset 2013 ftdatacite https://doi.org/10.1594/pangaea.830803 https://doi.org/10.1371/journal.pone.0058520.t002 2021-11-05T12:55:41Z Recent research has shown that exposure to elevated carbon dioxide (CO2) affects how fishes perceive their environment, affecting behavioral and cognitive processes leading to increased prey mortality. However, it is unclear if increased mortality results from changes in the dynamics of predator-prey interactions or due to prey increasing activity levels. Here we demonstrate that ocean pCO2 projected to occur by 2100 significantly effects the interactions of a predator-prey pair of common reef fish: the planktivorous damselfish Pomacentrus amboinensis and the piscivorous dottyback Pseudochromis fuscus. Prey exposed to elevated CO2 (880 µatm) or a present-day control (440 µatm) interacted with similarly exposed predators in a cross-factored design. Predators had the lowest capture success when exposed to elevated CO2 and interacting with prey exposed to present-day CO2. Prey exposed to elevated CO2 had reduced escape distances and longer reaction distances compared to prey exposed to present-day CO2 conditions, but this was dependent on whether the prey was paired with a CO2 exposed predator or not. This suggests that the dynamics of predator-prey interactions under future CO2 environments will depend on the extent to which the interacting species are affected and can adapt to the adverse effects of elevated CO2. : In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Lavigne and Gattuso, 2011) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2014-03-21. Dataset Ocean acidification DataCite Metadata Store (German National Library of Science and Technology) McCormick ENVELOPE(170.967,170.967,-71.833,-71.833) Pacific
institution Open Polar
collection DataCite Metadata Store (German National Library of Science and Technology)
op_collection_id ftdatacite
language English
topic Animalia
Behaviour
Chordata
Coast and continental shelf
Containers and aquaria 20-1000 L or < 1 m**2
Laboratory experiment
Nekton
Pelagos
Pomacentrus amboinensis
Pseudochromis fuscus
South Pacific
Species interaction
Tropical
Species
Treatment
Predator success
Predation rate
Predation rate, standard error
Distance
Distance, standard error
Apparent looming threshold
Apparent looming threshold, standard error
pH
pH, standard deviation
Temperature, water
Temperature, water, standard deviation
Salinity
Alkalinity, total
Alkalinity, total, standard deviation
Partial pressure of carbon dioxide water at sea surface temperature wet air
Partial pressure of carbon dioxide, standard deviation
Carbonate system computation flag
Carbon dioxide
Fugacity of carbon dioxide water at sea surface temperature wet air
Bicarbonate ion
Carbonate ion
Carbon, inorganic, dissolved
Aragonite saturation state
Calcite saturation state
Potentiometric
Potentiometric titration
Calculated using CO2SYS
Calculated using seacarb after Nisumaa et al. 2010
Ocean Acidification International Coordination Centre OA-ICC
spellingShingle Animalia
Behaviour
Chordata
Coast and continental shelf
Containers and aquaria 20-1000 L or < 1 m**2
Laboratory experiment
Nekton
Pelagos
Pomacentrus amboinensis
Pseudochromis fuscus
South Pacific
Species interaction
Tropical
Species
Treatment
Predator success
Predation rate
Predation rate, standard error
Distance
Distance, standard error
Apparent looming threshold
Apparent looming threshold, standard error
pH
pH, standard deviation
Temperature, water
Temperature, water, standard deviation
Salinity
Alkalinity, total
Alkalinity, total, standard deviation
Partial pressure of carbon dioxide water at sea surface temperature wet air
Partial pressure of carbon dioxide, standard deviation
Carbonate system computation flag
Carbon dioxide
Fugacity of carbon dioxide water at sea surface temperature wet air
Bicarbonate ion
Carbonate ion
Carbon, inorganic, dissolved
Aragonite saturation state
Calcite saturation state
Potentiometric
Potentiometric titration
Calculated using CO2SYS
Calculated using seacarb after Nisumaa et al. 2010
Ocean Acidification International Coordination Centre OA-ICC
Allan, Bridie J M
Domenici, Paolo
McCormick, Mark I
Watson, Sue-Ann
Munday, Philip L
Elevated CO2 affects predator-prey interactions through altered performance, supplement to: Allan, Bridie J M; Domenici, Paolo; McCormick, Mark I; Watson, Sue-Ann; Munday, Philip L (2013): Elevated CO2 Affects Predator-Prey Interactions through Altered Performance. PLoS ONE, 8(3), e58520
topic_facet Animalia
Behaviour
Chordata
Coast and continental shelf
Containers and aquaria 20-1000 L or < 1 m**2
Laboratory experiment
Nekton
Pelagos
Pomacentrus amboinensis
Pseudochromis fuscus
South Pacific
Species interaction
Tropical
Species
Treatment
Predator success
Predation rate
Predation rate, standard error
Distance
Distance, standard error
Apparent looming threshold
Apparent looming threshold, standard error
pH
pH, standard deviation
Temperature, water
Temperature, water, standard deviation
Salinity
Alkalinity, total
Alkalinity, total, standard deviation
Partial pressure of carbon dioxide water at sea surface temperature wet air
Partial pressure of carbon dioxide, standard deviation
Carbonate system computation flag
Carbon dioxide
Fugacity of carbon dioxide water at sea surface temperature wet air
Bicarbonate ion
Carbonate ion
Carbon, inorganic, dissolved
Aragonite saturation state
Calcite saturation state
Potentiometric
Potentiometric titration
Calculated using CO2SYS
Calculated using seacarb after Nisumaa et al. 2010
Ocean Acidification International Coordination Centre OA-ICC
description Recent research has shown that exposure to elevated carbon dioxide (CO2) affects how fishes perceive their environment, affecting behavioral and cognitive processes leading to increased prey mortality. However, it is unclear if increased mortality results from changes in the dynamics of predator-prey interactions or due to prey increasing activity levels. Here we demonstrate that ocean pCO2 projected to occur by 2100 significantly effects the interactions of a predator-prey pair of common reef fish: the planktivorous damselfish Pomacentrus amboinensis and the piscivorous dottyback Pseudochromis fuscus. Prey exposed to elevated CO2 (880 µatm) or a present-day control (440 µatm) interacted with similarly exposed predators in a cross-factored design. Predators had the lowest capture success when exposed to elevated CO2 and interacting with prey exposed to present-day CO2. Prey exposed to elevated CO2 had reduced escape distances and longer reaction distances compared to prey exposed to present-day CO2 conditions, but this was dependent on whether the prey was paired with a CO2 exposed predator or not. This suggests that the dynamics of predator-prey interactions under future CO2 environments will depend on the extent to which the interacting species are affected and can adapt to the adverse effects of elevated CO2. : In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Lavigne and Gattuso, 2011) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2014-03-21.
format Dataset
author Allan, Bridie J M
Domenici, Paolo
McCormick, Mark I
Watson, Sue-Ann
Munday, Philip L
author_facet Allan, Bridie J M
Domenici, Paolo
McCormick, Mark I
Watson, Sue-Ann
Munday, Philip L
author_sort Allan, Bridie J M
title Elevated CO2 affects predator-prey interactions through altered performance, supplement to: Allan, Bridie J M; Domenici, Paolo; McCormick, Mark I; Watson, Sue-Ann; Munday, Philip L (2013): Elevated CO2 Affects Predator-Prey Interactions through Altered Performance. PLoS ONE, 8(3), e58520
title_short Elevated CO2 affects predator-prey interactions through altered performance, supplement to: Allan, Bridie J M; Domenici, Paolo; McCormick, Mark I; Watson, Sue-Ann; Munday, Philip L (2013): Elevated CO2 Affects Predator-Prey Interactions through Altered Performance. PLoS ONE, 8(3), e58520
title_full Elevated CO2 affects predator-prey interactions through altered performance, supplement to: Allan, Bridie J M; Domenici, Paolo; McCormick, Mark I; Watson, Sue-Ann; Munday, Philip L (2013): Elevated CO2 Affects Predator-Prey Interactions through Altered Performance. PLoS ONE, 8(3), e58520
title_fullStr Elevated CO2 affects predator-prey interactions through altered performance, supplement to: Allan, Bridie J M; Domenici, Paolo; McCormick, Mark I; Watson, Sue-Ann; Munday, Philip L (2013): Elevated CO2 Affects Predator-Prey Interactions through Altered Performance. PLoS ONE, 8(3), e58520
title_full_unstemmed Elevated CO2 affects predator-prey interactions through altered performance, supplement to: Allan, Bridie J M; Domenici, Paolo; McCormick, Mark I; Watson, Sue-Ann; Munday, Philip L (2013): Elevated CO2 Affects Predator-Prey Interactions through Altered Performance. PLoS ONE, 8(3), e58520
title_sort elevated co2 affects predator-prey interactions through altered performance, supplement to: allan, bridie j m; domenici, paolo; mccormick, mark i; watson, sue-ann; munday, philip l (2013): elevated co2 affects predator-prey interactions through altered performance. plos one, 8(3), e58520
publisher PANGAEA - Data Publisher for Earth & Environmental Science
publishDate 2013
url https://dx.doi.org/10.1594/pangaea.830803
https://doi.pangaea.de/10.1594/PANGAEA.830803
long_lat ENVELOPE(170.967,170.967,-71.833,-71.833)
geographic McCormick
Pacific
geographic_facet McCormick
Pacific
genre Ocean acidification
genre_facet Ocean acidification
op_relation https://cran.r-project.org/package=seacarb
https://dx.doi.org/10.1371/journal.pone.0058520.t002
https://cran.r-project.org/package=seacarb
op_rights Creative Commons Attribution 3.0 Unported
https://creativecommons.org/licenses/by/3.0/legalcode
cc-by-3.0
op_rightsnorm CC-BY
op_doi https://doi.org/10.1594/pangaea.830803
https://doi.org/10.1371/journal.pone.0058520.t002
_version_ 1766158467692756992