Downwelling solar irradiance, upwelling solar radiance, sky leaving radiance, and cloud cover observed during ARCHEMHAB study (on Maria S. Merian Leg MSM21/3) from 2012-07-26 to 2012-08-10 ...

The need to obtain ocean color essential climate variables (OC-ECVs) using hyperspectral technology has gained increased interest in recent years. Assessing ocean color on a large scale in high latitude environments using satellite remote sensing is constrained by polar environmental conditions. Nev...

Full description

Bibliographic Details
Main Authors: Garaba, Shungudzemwoyo Pascal, Zielinski, Oliver
Format: Article in Journal/Newspaper
Language:English
Published: PANGAEA 2013
Subjects:
Online Access:https://dx.doi.org/10.1594/pangaea.819717
https://doi.pangaea.de/10.1594/PANGAEA.819717
Description
Summary:The need to obtain ocean color essential climate variables (OC-ECVs) using hyperspectral technology has gained increased interest in recent years. Assessing ocean color on a large scale in high latitude environments using satellite remote sensing is constrained by polar environmental conditions. Nevertheless, on a small scale we can assess ocean color using above-water and in-water remote sensing. Unfortunately, above-water remote sensing can only determine apparent optical properties leaving the sea surface and is susceptible to near surface environmental conditions for example sky and sunglint. Consequently, we have to rely on accurate in-water remote sensing as it can provide both synoptic inherent and apparent optical properties of seawater. We use normalized water leaving radiance LWN or the equivalent remote sensing reflectance RRS from 27 stations to compare the differences in above-water and in-water OC-ECVs. Analysis of above-water and in-water RRS spectra provided very good match-ups (R2 > 0.97, ... : Supplement to: Garaba, Shungudzemwoyo Pascal; Zielinski, Oliver (2013): Comparison of remote sensing reflectance from above-water and in-water measurements west of Greenland, Labrador Sea, Denmark Strait, and west of Iceland. Optics Express, 21(13), 15938 ...