Radiocarbon ages, clay mineral content and planktic foraminifera counts of sediment cores from the SW Barents Sea, supplement to: Junttila, Juho; Aagaard-Sørensen, Steffen; Husum, Katrine; Hald, Morten (2010): Late Glacial–Holocene clay minerals elucidating glacial history in the SW Barents Sea. Marine Geology, 276(1-4), 71-85

Detailed investigations of the distribution of clay minerals of Late Glacial-Holocene sediments from the SW Barents Sea provide important new information about the provenance and transport paths of the sediments. This information leads to better understanding of the onset of the last deglaciation an...

Full description

Bibliographic Details
Main Authors: Junttila, Juho, Aagaard-Sørensen, Steffen, Husum, Katrine, Hald, Morten
Format: Article in Journal/Newspaper
Language:English
Published: PANGAEA - Data Publisher for Earth & Environmental Science 2010
Subjects:
IPY
Online Access:https://dx.doi.org/10.1594/pangaea.811757
https://doi.pangaea.de/10.1594/PANGAEA.811757
id ftdatacite:10.1594/pangaea.811757
record_format openpolar
spelling ftdatacite:10.1594/pangaea.811757 2023-05-15T15:38:36+02:00 Radiocarbon ages, clay mineral content and planktic foraminifera counts of sediment cores from the SW Barents Sea, supplement to: Junttila, Juho; Aagaard-Sørensen, Steffen; Husum, Katrine; Hald, Morten (2010): Late Glacial–Holocene clay minerals elucidating glacial history in the SW Barents Sea. Marine Geology, 276(1-4), 71-85 Junttila, Juho Aagaard-Sørensen, Steffen Husum, Katrine Hald, Morten 2010 application/zip https://dx.doi.org/10.1594/pangaea.811757 https://doi.pangaea.de/10.1594/PANGAEA.811757 en eng PANGAEA - Data Publisher for Earth & Environmental Science https://dx.doi.org/10.1016/j.margeo.2010.07.009 Creative Commons Attribution 3.0 Unported https://creativecommons.org/licenses/by/3.0/legalcode cc-by-3.0 CC-BY International Polar Year 2007-2008 IPY Collection article Supplementary Collection of Datasets 2010 ftdatacite https://doi.org/10.1594/pangaea.811757 https://doi.org/10.1016/j.margeo.2010.07.009 2021-11-05T12:55:41Z Detailed investigations of the distribution of clay minerals of Late Glacial-Holocene sediments from the SW Barents Sea provide important new information about the provenance and transport paths of the sediments. This information leads to better understanding of the onset of the last deglaciation and subsequent advances/retreats of the Barents Sea- and Fennoscandian Ice Sheets. The results show interaction and changes in the Fennoscandian Ice Sheet and Bj0rn0yrenna Ice Stream during the last deglaciation. High illite content and maximum kaolinite content (>18700 cal yr B.P.) indicate glacial erosion from both the Fennoscandian Ice Sheet and Bjornoyrenna Ice Stream (LGM II). The occurrence of a C. reniforme dominated benthic foraminiferal assemblage (~18700 cal yr B.P.) indicates that the northern most cores site in Ingoydjupet had already been deglaciated and was probably situated in a glacier distal environment. In addition, smectite content reaching its highest level, concurrent with the presence of Neogloboquadrina pachyderma (sin) dominated planktic foraminifera can be related to the strengthening of the Atlantic Current. The inflow of the Atlantic Water may have triggered deglaciation of the Fennoscandian Ice Sheet (Bolling interstadial). A rapid increase in illite content, reflecting strong melting of the Fennoscandian Ice Sheet (~15 000 cal yr B.P.), indicates the onset of deglaciation in a core closer to the continent. Decrease of illite and IRD content, together with the deposition of laminated sediments during the Older Dryas stadial (15000-14000 cal yr B.P.) indicates colder conditions and formation of at least seasonal sea-ice. In addition, increased kaolinite content indicates increased glacial erosion of the Bjornoyrenna Ice Stream. The highest values of illite content and increased IRD content (14000-13000 cal yr B.P.) can be related to strong melting of the Fennoscandian Ice Sheet. A slight indication of the Younger Dryas cold period is given by the decrease in illite and IRD contents. All clay contents are more stable during Holocene compared to LGM and the last deglaciation. : Data extracted in the frame of a joint ICSTI/PANGAEA IPY effort, see http://doi.pangaea.de/10.1594/PANGAEA.150150 Article in Journal/Newspaper Barents Sea Fennoscandian Ice Sheet International Polar Year IPY Neogloboquadrina pachyderma Sea ice DataCite Metadata Store (German National Library of Science and Technology) Aagaard ENVELOPE(-64.517,-64.517,-66.783,-66.783) Barents Sea Junttila ENVELOPE(25.017,25.017,67.850,67.850)
institution Open Polar
collection DataCite Metadata Store (German National Library of Science and Technology)
op_collection_id ftdatacite
language English
topic International Polar Year 2007-2008 IPY
spellingShingle International Polar Year 2007-2008 IPY
Junttila, Juho
Aagaard-Sørensen, Steffen
Husum, Katrine
Hald, Morten
Radiocarbon ages, clay mineral content and planktic foraminifera counts of sediment cores from the SW Barents Sea, supplement to: Junttila, Juho; Aagaard-Sørensen, Steffen; Husum, Katrine; Hald, Morten (2010): Late Glacial–Holocene clay minerals elucidating glacial history in the SW Barents Sea. Marine Geology, 276(1-4), 71-85
topic_facet International Polar Year 2007-2008 IPY
description Detailed investigations of the distribution of clay minerals of Late Glacial-Holocene sediments from the SW Barents Sea provide important new information about the provenance and transport paths of the sediments. This information leads to better understanding of the onset of the last deglaciation and subsequent advances/retreats of the Barents Sea- and Fennoscandian Ice Sheets. The results show interaction and changes in the Fennoscandian Ice Sheet and Bj0rn0yrenna Ice Stream during the last deglaciation. High illite content and maximum kaolinite content (>18700 cal yr B.P.) indicate glacial erosion from both the Fennoscandian Ice Sheet and Bjornoyrenna Ice Stream (LGM II). The occurrence of a C. reniforme dominated benthic foraminiferal assemblage (~18700 cal yr B.P.) indicates that the northern most cores site in Ingoydjupet had already been deglaciated and was probably situated in a glacier distal environment. In addition, smectite content reaching its highest level, concurrent with the presence of Neogloboquadrina pachyderma (sin) dominated planktic foraminifera can be related to the strengthening of the Atlantic Current. The inflow of the Atlantic Water may have triggered deglaciation of the Fennoscandian Ice Sheet (Bolling interstadial). A rapid increase in illite content, reflecting strong melting of the Fennoscandian Ice Sheet (~15 000 cal yr B.P.), indicates the onset of deglaciation in a core closer to the continent. Decrease of illite and IRD content, together with the deposition of laminated sediments during the Older Dryas stadial (15000-14000 cal yr B.P.) indicates colder conditions and formation of at least seasonal sea-ice. In addition, increased kaolinite content indicates increased glacial erosion of the Bjornoyrenna Ice Stream. The highest values of illite content and increased IRD content (14000-13000 cal yr B.P.) can be related to strong melting of the Fennoscandian Ice Sheet. A slight indication of the Younger Dryas cold period is given by the decrease in illite and IRD contents. All clay contents are more stable during Holocene compared to LGM and the last deglaciation. : Data extracted in the frame of a joint ICSTI/PANGAEA IPY effort, see http://doi.pangaea.de/10.1594/PANGAEA.150150
format Article in Journal/Newspaper
author Junttila, Juho
Aagaard-Sørensen, Steffen
Husum, Katrine
Hald, Morten
author_facet Junttila, Juho
Aagaard-Sørensen, Steffen
Husum, Katrine
Hald, Morten
author_sort Junttila, Juho
title Radiocarbon ages, clay mineral content and planktic foraminifera counts of sediment cores from the SW Barents Sea, supplement to: Junttila, Juho; Aagaard-Sørensen, Steffen; Husum, Katrine; Hald, Morten (2010): Late Glacial–Holocene clay minerals elucidating glacial history in the SW Barents Sea. Marine Geology, 276(1-4), 71-85
title_short Radiocarbon ages, clay mineral content and planktic foraminifera counts of sediment cores from the SW Barents Sea, supplement to: Junttila, Juho; Aagaard-Sørensen, Steffen; Husum, Katrine; Hald, Morten (2010): Late Glacial–Holocene clay minerals elucidating glacial history in the SW Barents Sea. Marine Geology, 276(1-4), 71-85
title_full Radiocarbon ages, clay mineral content and planktic foraminifera counts of sediment cores from the SW Barents Sea, supplement to: Junttila, Juho; Aagaard-Sørensen, Steffen; Husum, Katrine; Hald, Morten (2010): Late Glacial–Holocene clay minerals elucidating glacial history in the SW Barents Sea. Marine Geology, 276(1-4), 71-85
title_fullStr Radiocarbon ages, clay mineral content and planktic foraminifera counts of sediment cores from the SW Barents Sea, supplement to: Junttila, Juho; Aagaard-Sørensen, Steffen; Husum, Katrine; Hald, Morten (2010): Late Glacial–Holocene clay minerals elucidating glacial history in the SW Barents Sea. Marine Geology, 276(1-4), 71-85
title_full_unstemmed Radiocarbon ages, clay mineral content and planktic foraminifera counts of sediment cores from the SW Barents Sea, supplement to: Junttila, Juho; Aagaard-Sørensen, Steffen; Husum, Katrine; Hald, Morten (2010): Late Glacial–Holocene clay minerals elucidating glacial history in the SW Barents Sea. Marine Geology, 276(1-4), 71-85
title_sort radiocarbon ages, clay mineral content and planktic foraminifera counts of sediment cores from the sw barents sea, supplement to: junttila, juho; aagaard-sørensen, steffen; husum, katrine; hald, morten (2010): late glacial–holocene clay minerals elucidating glacial history in the sw barents sea. marine geology, 276(1-4), 71-85
publisher PANGAEA - Data Publisher for Earth & Environmental Science
publishDate 2010
url https://dx.doi.org/10.1594/pangaea.811757
https://doi.pangaea.de/10.1594/PANGAEA.811757
long_lat ENVELOPE(-64.517,-64.517,-66.783,-66.783)
ENVELOPE(25.017,25.017,67.850,67.850)
geographic Aagaard
Barents Sea
Junttila
geographic_facet Aagaard
Barents Sea
Junttila
genre Barents Sea
Fennoscandian
Ice Sheet
International Polar Year
IPY
Neogloboquadrina pachyderma
Sea ice
genre_facet Barents Sea
Fennoscandian
Ice Sheet
International Polar Year
IPY
Neogloboquadrina pachyderma
Sea ice
op_relation https://dx.doi.org/10.1016/j.margeo.2010.07.009
op_rights Creative Commons Attribution 3.0 Unported
https://creativecommons.org/licenses/by/3.0/legalcode
cc-by-3.0
op_rightsnorm CC-BY
op_doi https://doi.org/10.1594/pangaea.811757
https://doi.org/10.1016/j.margeo.2010.07.009
_version_ 1766369726710153216