Gas hydrates of nonpressurized (GC) and pressurized (DAPC) sediment cores from the Hakon Mosby Mud Volcano, SW Barents Sea ...
The occurrence of gas hydrates at submarine mud volcanoes (MVs) located within the gas hydrate stability zone (GHSZ) is controlled by upward fluid and heat flux associated with MV activity. Determining the spatial distribution of gas hydrates at MVs is crucial to evaluate their sensitivity to known...
Main Authors: | , , , , |
---|---|
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
PANGAEA
2011
|
Subjects: | |
Online Access: | https://dx.doi.org/10.1594/pangaea.770365 https://doi.pangaea.de/10.1594/PANGAEA.770365 |
Summary: | The occurrence of gas hydrates at submarine mud volcanoes (MVs) located within the gas hydrate stability zone (GHSZ) is controlled by upward fluid and heat flux associated with MV activity. Determining the spatial distribution of gas hydrates at MVs is crucial to evaluate their sensitivity to known episodic changes in volcanic activity. We determined the hydrocarbon inventory and spatial distribution of hydrates at an individual MV structure. The Håkon Mosby Mud Volcano (HMMV), located at 1,250 m water depth on the Barents Sea slope, was investigated by combined pressure core sampling, heat flow measurements, and pore water chemical analysis. Quantitative pressure core degassing revealed gas-sediment ratios between 3.1 and 25.7, corresponding to hydrate concentrations of up to 21.3% of the pore volume. Hydrocarbon compositions and physicochemical conditions imply that gas hydrates incipiently crystallize as structure I hydrate, with a dissociation temperature of around 13.8°C at this water depth. Based on ... : Supplement to: Pape, Thomas; Feseker, Tomas; Kasten, Sabine; Fischer, David; Bohrmann, Gerhard (2011): Distribution and abundance of gas hydrates in near-surface deposits of the Håkon Mosby Mud Volcano, SW Barents Sea. Geochemistry, Geophysics, Geosystems, 12(9), Q09009, 21 PP. ... |
---|