Seawater carbonate chemistry and Pacific oyster (Crassostrea gigas) biological processes during experiments, 2011, supplement to: Gazeau, Frédéric; Gattuso, Jean-Pierre; Greaves, Mervyn; Elderfield, Henry; Peene, J; Heip, Carlo H R; Middelburg, Jack J (2011): Effect of carbonate chemistry alteration on the early embryonic development of the Pacific oyster (Crassostrea gigas). PLoS ONE, 6(8), e23010

Ocean acidification, due to anthropogenic CO2 absorption by the ocean, may have profound impacts on marine biota. Calcareous organisms are expected to be particularly sensitive due to the decreasing availability of carbonate ions driven by decreasing pH levels. Recently, some studies focused on the...

Full description

Bibliographic Details
Main Authors: Gazeau, Frédéric, Gattuso, Jean-Pierre, Greaves, Mervyn, Elderfield, Henry, Peene, J, Heip, Carlo H R, Middelburg, Jack J
Format: Dataset
Language:English
Published: PANGAEA - Data Publisher for Earth & Environmental Science 2011
Subjects:
pH
Online Access:https://dx.doi.org/10.1594/pangaea.769727
https://doi.pangaea.de/10.1594/PANGAEA.769727
Description
Summary:Ocean acidification, due to anthropogenic CO2 absorption by the ocean, may have profound impacts on marine biota. Calcareous organisms are expected to be particularly sensitive due to the decreasing availability of carbonate ions driven by decreasing pH levels. Recently, some studies focused on the early life stages of mollusks that are supposedly more sensitive to environmental disturbances than adult stages. Although these studies have shown decreased growth rates and increased proportions of abnormal development under low pH conditions, they did not allow attribution to pH induced changes in physiology or changes due to a decrease in aragonite saturation state. This study aims to assess the impact of several carbonate-system perturbations on the growth of Pacific oyster (Crassostrea gigas) larvae during the first 3 days of development (until shelled D-veliger larvae). Seawater with five different chemistries was obtained by separately manipulating pH, total alkalinity and aragonite saturation state (calcium addition). Results showed that the developmental success and growth rates were not directly affected by changes in pH or aragonite saturation state but were highly correlated with the availability of carbonate ions. In contrast to previous studies, both developmental success into viable D-shaped larvae and growth rates were not significantly altered as long as carbonate ion concentrations were above aragonite saturation levels, but they strongly decreased below saturation levels. These results suggest that the mechanisms used by these organisms to regulate calcification rates are not efficient enough to compensate for the low availability of carbonate ions under corrosive conditions. : In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Lavigne and Gattuso, 2011) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI).