Sea surface temperature reconstruction based on alkenones of sediment core M35003-4, supplement to: Rühlemann, Carsten; Mulitza, Stefan; Müller, Peter J; Wefer, Gerold; Zahn, Rainer (1999): Warming of the tropical Atlantic Ocean and slowdown of thermohaline circulation during the last deglaciation. Nature, 402(6761), 511-514

Evidence for abrupt climate changes on millennial and shorter timescales is widespread in marine and terrestrial climate records (Dansgard et al., 1993, doi:10.1038/364218a0; Bond et al., 1993, doi:10.1038/365143a0; Charles et al., 1996, doi:10.1016/0012-821X(96)00083-0, Bard et al., 1997, doi:10.10...

Full description

Bibliographic Details
Main Authors: Rühlemann, Carsten, Mulitza, Stefan, Müller, Peter J, Wefer, Gerold, Zahn, Rainer
Format: Article in Journal/Newspaper
Language:English
Published: PANGAEA - Data Publisher for Earth & Environmental Science 1999
Subjects:
Online Access:https://dx.doi.org/10.1594/pangaea.734784
https://doi.pangaea.de/10.1594/PANGAEA.734784
id ftdatacite:10.1594/pangaea.734784
record_format openpolar
spelling ftdatacite:10.1594/pangaea.734784 2023-05-15T17:29:15+02:00 Sea surface temperature reconstruction based on alkenones of sediment core M35003-4, supplement to: Rühlemann, Carsten; Mulitza, Stefan; Müller, Peter J; Wefer, Gerold; Zahn, Rainer (1999): Warming of the tropical Atlantic Ocean and slowdown of thermohaline circulation during the last deglaciation. Nature, 402(6761), 511-514 Rühlemann, Carsten Mulitza, Stefan Müller, Peter J Wefer, Gerold Zahn, Rainer 1999 application/zip https://dx.doi.org/10.1594/pangaea.734784 https://doi.pangaea.de/10.1594/PANGAEA.734784 en eng PANGAEA - Data Publisher for Earth & Environmental Science https://dx.doi.org/10.1038/990069 Creative Commons Attribution 3.0 Unported https://creativecommons.org/licenses/by/3.0/legalcode cc-by-3.0 CC-BY Gravity corer Kiel type M35/1 Meteor 1986 Collection article Supplementary Collection of Datasets 1999 ftdatacite https://doi.org/10.1594/pangaea.734784 https://doi.org/10.1038/990069 2021-11-05T12:55:41Z Evidence for abrupt climate changes on millennial and shorter timescales is widespread in marine and terrestrial climate records (Dansgard et al., 1993, doi:10.1038/364218a0; Bond et al., 1993, doi:10.1038/365143a0; Charles et al., 1996, doi:10.1016/0012-821X(96)00083-0, Bard et al., 1997, doi:10.1038/385707a0). Rapid reorganization of ocean circulation is considered to exert some control over these changes (Broecker et al., 1985, doi:10.1038/315021a0), as are shifts in the concentrations of atmospheric greenhouse gases (Broecker, 1994, doi:10.1038/372421a0). The response of the climate system to these two influences is fundamentally different: slowing of thermohaline overturn in the North Atlantic Ocean is expected to decrease northward heat transport by the ocean and to induce warming of the tropical Atlantic (Crowley, 1992, doi:10.1029/92PA01058; Manabe and Stouffer, 1997, doi:10.1029/96PA03932), whereas atmospheric greenhouse forcing should cause roughly synchronous global temperature changes (Manabe et al., 1991, doi:10.1175/1520-0442(1991)004<0785:TROACO>2.0.CO;2). So these two mechanisms of climate change should be distinguishable by the timing of surface-water temperature variations relative to changes in deep-water circulation. Here we present a high-temporal-resolution record of sea surface temperatures from the western tropical North Atlantic Ocean which spans the past 29,000 years, derived from measurements of temperature-sensitive alkenone unsaturation in sedimentary organic matter. We find significant warming is documented for Heinrich event H1 (16,900-15,400 calendar years bp) and the Younger Dryas event (12,900-11,600 cal. yr bp), which were periods of intense cooling in the northern North Atlantic. Temperature changes in the tropical and high-latitude North Atlantic are out of phase, suggesting that the thermohaline circulation was the important trigger for these rapid climate changes. Article in Journal/Newspaper North Atlantic DataCite Metadata Store (German National Library of Science and Technology)
institution Open Polar
collection DataCite Metadata Store (German National Library of Science and Technology)
op_collection_id ftdatacite
language English
topic Gravity corer Kiel type
M35/1
Meteor 1986
spellingShingle Gravity corer Kiel type
M35/1
Meteor 1986
Rühlemann, Carsten
Mulitza, Stefan
Müller, Peter J
Wefer, Gerold
Zahn, Rainer
Sea surface temperature reconstruction based on alkenones of sediment core M35003-4, supplement to: Rühlemann, Carsten; Mulitza, Stefan; Müller, Peter J; Wefer, Gerold; Zahn, Rainer (1999): Warming of the tropical Atlantic Ocean and slowdown of thermohaline circulation during the last deglaciation. Nature, 402(6761), 511-514
topic_facet Gravity corer Kiel type
M35/1
Meteor 1986
description Evidence for abrupt climate changes on millennial and shorter timescales is widespread in marine and terrestrial climate records (Dansgard et al., 1993, doi:10.1038/364218a0; Bond et al., 1993, doi:10.1038/365143a0; Charles et al., 1996, doi:10.1016/0012-821X(96)00083-0, Bard et al., 1997, doi:10.1038/385707a0). Rapid reorganization of ocean circulation is considered to exert some control over these changes (Broecker et al., 1985, doi:10.1038/315021a0), as are shifts in the concentrations of atmospheric greenhouse gases (Broecker, 1994, doi:10.1038/372421a0). The response of the climate system to these two influences is fundamentally different: slowing of thermohaline overturn in the North Atlantic Ocean is expected to decrease northward heat transport by the ocean and to induce warming of the tropical Atlantic (Crowley, 1992, doi:10.1029/92PA01058; Manabe and Stouffer, 1997, doi:10.1029/96PA03932), whereas atmospheric greenhouse forcing should cause roughly synchronous global temperature changes (Manabe et al., 1991, doi:10.1175/1520-0442(1991)004<0785:TROACO>2.0.CO;2). So these two mechanisms of climate change should be distinguishable by the timing of surface-water temperature variations relative to changes in deep-water circulation. Here we present a high-temporal-resolution record of sea surface temperatures from the western tropical North Atlantic Ocean which spans the past 29,000 years, derived from measurements of temperature-sensitive alkenone unsaturation in sedimentary organic matter. We find significant warming is documented for Heinrich event H1 (16,900-15,400 calendar years bp) and the Younger Dryas event (12,900-11,600 cal. yr bp), which were periods of intense cooling in the northern North Atlantic. Temperature changes in the tropical and high-latitude North Atlantic are out of phase, suggesting that the thermohaline circulation was the important trigger for these rapid climate changes.
format Article in Journal/Newspaper
author Rühlemann, Carsten
Mulitza, Stefan
Müller, Peter J
Wefer, Gerold
Zahn, Rainer
author_facet Rühlemann, Carsten
Mulitza, Stefan
Müller, Peter J
Wefer, Gerold
Zahn, Rainer
author_sort Rühlemann, Carsten
title Sea surface temperature reconstruction based on alkenones of sediment core M35003-4, supplement to: Rühlemann, Carsten; Mulitza, Stefan; Müller, Peter J; Wefer, Gerold; Zahn, Rainer (1999): Warming of the tropical Atlantic Ocean and slowdown of thermohaline circulation during the last deglaciation. Nature, 402(6761), 511-514
title_short Sea surface temperature reconstruction based on alkenones of sediment core M35003-4, supplement to: Rühlemann, Carsten; Mulitza, Stefan; Müller, Peter J; Wefer, Gerold; Zahn, Rainer (1999): Warming of the tropical Atlantic Ocean and slowdown of thermohaline circulation during the last deglaciation. Nature, 402(6761), 511-514
title_full Sea surface temperature reconstruction based on alkenones of sediment core M35003-4, supplement to: Rühlemann, Carsten; Mulitza, Stefan; Müller, Peter J; Wefer, Gerold; Zahn, Rainer (1999): Warming of the tropical Atlantic Ocean and slowdown of thermohaline circulation during the last deglaciation. Nature, 402(6761), 511-514
title_fullStr Sea surface temperature reconstruction based on alkenones of sediment core M35003-4, supplement to: Rühlemann, Carsten; Mulitza, Stefan; Müller, Peter J; Wefer, Gerold; Zahn, Rainer (1999): Warming of the tropical Atlantic Ocean and slowdown of thermohaline circulation during the last deglaciation. Nature, 402(6761), 511-514
title_full_unstemmed Sea surface temperature reconstruction based on alkenones of sediment core M35003-4, supplement to: Rühlemann, Carsten; Mulitza, Stefan; Müller, Peter J; Wefer, Gerold; Zahn, Rainer (1999): Warming of the tropical Atlantic Ocean and slowdown of thermohaline circulation during the last deglaciation. Nature, 402(6761), 511-514
title_sort sea surface temperature reconstruction based on alkenones of sediment core m35003-4, supplement to: rühlemann, carsten; mulitza, stefan; müller, peter j; wefer, gerold; zahn, rainer (1999): warming of the tropical atlantic ocean and slowdown of thermohaline circulation during the last deglaciation. nature, 402(6761), 511-514
publisher PANGAEA - Data Publisher for Earth & Environmental Science
publishDate 1999
url https://dx.doi.org/10.1594/pangaea.734784
https://doi.pangaea.de/10.1594/PANGAEA.734784
genre North Atlantic
genre_facet North Atlantic
op_relation https://dx.doi.org/10.1038/990069
op_rights Creative Commons Attribution 3.0 Unported
https://creativecommons.org/licenses/by/3.0/legalcode
cc-by-3.0
op_rightsnorm CC-BY
op_doi https://doi.org/10.1594/pangaea.734784
https://doi.org/10.1038/990069
_version_ 1766122909481304064