The evolution and storage of primitive melts in the Eastern Volcanic Zone of Iceland: the 10 ka Grímsvötn tephra series (i.e. the Saksunarvatn ash)

Major, trace and volatile elements were measured in a suite of primitive macrocrysts and melt inclusions from the thickest layer of the 10 ka Grímsvötn tephra series (i.e. Saksunarvatn ash) at Lake Hvítárvatn in central Iceland. In the absence of primitive tholeiitic eruptions (MgO > 7 wt%) withi...

Full description

Bibliographic Details
Main Authors: Neave, David A., Maclennan, John, Thordarson, Thorvaldur, Hartley, Margaret E.
Format: Article in Journal/Newspaper
Language:English
Published: Berlin : Springer Verlag 2015
Subjects:
Online Access:https://dx.doi.org/10.15488/860
http://www.repo.uni-hannover.de/handle/123456789/884
id ftdatacite:10.15488/860
record_format openpolar
institution Open Polar
collection DataCite Metadata Store (German National Library of Science and Technology)
op_collection_id ftdatacite
language English
topic Basalt
Iceland
Plagioclase-hosted melt inclusions
Saksunarvatn
Thermobarometry
barometry
enrichment
host rock
igneous geochemistry
melt inclusion
phase equilibrium
plagioclase
pressure effect
tephra
trace element
volcanic eruption
Grimsvotn
Hvitarvatn
Dewey Decimal Classification500 | Naturwissenschaften550 | Geowissenschaften
spellingShingle Basalt
Iceland
Plagioclase-hosted melt inclusions
Saksunarvatn
Thermobarometry
barometry
enrichment
host rock
igneous geochemistry
melt inclusion
phase equilibrium
plagioclase
pressure effect
tephra
trace element
volcanic eruption
Grimsvotn
Hvitarvatn
Dewey Decimal Classification500 | Naturwissenschaften550 | Geowissenschaften
Neave, David A.
Maclennan, John
Thordarson, Thorvaldur
Hartley, Margaret E.
The evolution and storage of primitive melts in the Eastern Volcanic Zone of Iceland: the 10 ka Grímsvötn tephra series (i.e. the Saksunarvatn ash)
topic_facet Basalt
Iceland
Plagioclase-hosted melt inclusions
Saksunarvatn
Thermobarometry
barometry
enrichment
host rock
igneous geochemistry
melt inclusion
phase equilibrium
plagioclase
pressure effect
tephra
trace element
volcanic eruption
Grimsvotn
Hvitarvatn
Dewey Decimal Classification500 | Naturwissenschaften550 | Geowissenschaften
description Major, trace and volatile elements were measured in a suite of primitive macrocrysts and melt inclusions from the thickest layer of the 10 ka Grímsvötn tephra series (i.e. Saksunarvatn ash) at Lake Hvítárvatn in central Iceland. In the absence of primitive tholeiitic eruptions (MgO > 7 wt%) within the Eastern Volcanic Zone (EVZ) of Iceland, these crystal and inclusion compositions provide an important insight into magmatic processes in this volcanically productive region. Matrix glass compositions show strong similarities with glass compositions from the AD 1783–1784 Laki eruption, confirming the affinity of the tephra series with the Grímsvötn volcanic system. Macrocrysts can be divided into a primitive assemblage of zoned macrocryst cores (An78–An92, Mg#cpx = 82–87, Fo79.5–Fo87) and an evolved assemblage consisting of unzoned macrocrysts and the rims of zoned macrocrysts (An60–An68, Mg#cpx = 71–78, Fo70–Fo76). Although the evolved assemblage is close to being in equilibrium with the matrix glass, trace element disequilibrium between primitive and evolved assemblages indicates that they were derived from different distributions of mantle melt compositions. Juxtaposition of disequilibrium assemblages probably occurred during disaggregation of incompatible trace element-depleted mushes (mean La/Ybmelt = 2.1) into aphyric and incompatible trace element-enriched liquids (La/Ybmelt = 3.6) shortly before the growth of the evolved macrocryst assemblage. Post-entrapment modification of plagioclase-hosted melt inclusions has been minimal and high-Mg# inclusions record differentiation and mixing of compositionally variable mantle melts that are amongst the most primitive liquids known from the EVZ. Coupled high-field strength element (HFSE) depletion and incompatible trace element enrichment in a subset of primitive plagioclase-hosted melt inclusions can be accounted for by inclusion formation following plagioclase dissolution driven by interaction with plagioclase-undersaturated melts. Thermobarometric calculations indicate that final crystal–melt equilibration within the evolved assemblage occurred at ~1140 °C and 0.0–1.5 kbar. Considering the large volume of the erupted tephra and textural evidence for rapid crystallisation of the evolved assemblage, 0.0–1.5 kbar is considered unlikely to represent a pressure of long-term magma accumulation and storage. Multiple thermometers indicate that the primitive assemblage crystallised at high temperatures of 1240–1300 °C. Different barometers, however, return markedly different crystallisation depth estimates. Raw clinopyroxene–melt pressures of 5.5–7.5 kbar conflict with apparent melt inclusion entrapment pressures of 1.4 kbar. After applying a correction derived from published experimental data, clinopyroxene–melt equilibria return mid-crustal pressures of 4 ± 1.5 kbar, which are consistent with pressures estimated from the major element content of primitive melt inclusions. Long-term storage of primitive magmas in the mid-crust implies that low CO2 concentrations measured in primitive plagioclase-hosted inclusions (262–800 ppm) result from post-entrapment CO2 loss during transport through the shallow crust. In order to reconstruct basaltic plumbing system geometries from petrological data with greater confidence, mineral–melt equilibrium models require refinement at pressures of magma storage in Iceland. Further basalt phase equilibria experiments are thus needed within the crucial 1–7 kbar range.
format Article in Journal/Newspaper
author Neave, David A.
Maclennan, John
Thordarson, Thorvaldur
Hartley, Margaret E.
author_facet Neave, David A.
Maclennan, John
Thordarson, Thorvaldur
Hartley, Margaret E.
author_sort Neave, David A.
title The evolution and storage of primitive melts in the Eastern Volcanic Zone of Iceland: the 10 ka Grímsvötn tephra series (i.e. the Saksunarvatn ash)
title_short The evolution and storage of primitive melts in the Eastern Volcanic Zone of Iceland: the 10 ka Grímsvötn tephra series (i.e. the Saksunarvatn ash)
title_full The evolution and storage of primitive melts in the Eastern Volcanic Zone of Iceland: the 10 ka Grímsvötn tephra series (i.e. the Saksunarvatn ash)
title_fullStr The evolution and storage of primitive melts in the Eastern Volcanic Zone of Iceland: the 10 ka Grímsvötn tephra series (i.e. the Saksunarvatn ash)
title_full_unstemmed The evolution and storage of primitive melts in the Eastern Volcanic Zone of Iceland: the 10 ka Grímsvötn tephra series (i.e. the Saksunarvatn ash)
title_sort evolution and storage of primitive melts in the eastern volcanic zone of iceland: the 10 ka grímsvötn tephra series (i.e. the saksunarvatn ash)
publisher Berlin : Springer Verlag
publishDate 2015
url https://dx.doi.org/10.15488/860
http://www.repo.uni-hannover.de/handle/123456789/884
long_lat ENVELOPE(-64.320,-64.320,-65.907,-65.907)
ENVELOPE(-18.237,-18.237,64.070,64.070)
ENVELOPE(-7.150,-7.150,62.233,62.233)
ENVELOPE(-17.319,-17.319,64.416,64.416)
ENVELOPE(-19.837,-19.837,64.612,64.612)
geographic Dewey
Laki
Saksunarvatn
Grimsvotn
Hvítárvatn
geographic_facet Dewey
Laki
Saksunarvatn
Grimsvotn
Hvítárvatn
genre Iceland
genre_facet Iceland
op_rights Creative Commons Attribution 4.0 International
CC BY 4.0 Unported
https://creativecommons.org/licenses/by/4.0/legalcode
cc-by-4.0
op_rightsnorm CC-BY
op_doi https://doi.org/10.15488/860
_version_ 1766037769488957440
spelling ftdatacite:10.15488/860 2023-05-15T16:47:41+02:00 The evolution and storage of primitive melts in the Eastern Volcanic Zone of Iceland: the 10 ka Grímsvötn tephra series (i.e. the Saksunarvatn ash) Neave, David A. Maclennan, John Thordarson, Thorvaldur Hartley, Margaret E. 2015 https://dx.doi.org/10.15488/860 http://www.repo.uni-hannover.de/handle/123456789/884 en eng Berlin : Springer Verlag Creative Commons Attribution 4.0 International CC BY 4.0 Unported https://creativecommons.org/licenses/by/4.0/legalcode cc-by-4.0 CC-BY Basalt Iceland Plagioclase-hosted melt inclusions Saksunarvatn Thermobarometry barometry enrichment host rock igneous geochemistry melt inclusion phase equilibrium plagioclase pressure effect tephra trace element volcanic eruption Grimsvotn Hvitarvatn Dewey Decimal Classification500 | Naturwissenschaften550 | Geowissenschaften Other CreativeWork article 2015 ftdatacite https://doi.org/10.15488/860 2021-11-05T12:55:41Z Major, trace and volatile elements were measured in a suite of primitive macrocrysts and melt inclusions from the thickest layer of the 10 ka Grímsvötn tephra series (i.e. Saksunarvatn ash) at Lake Hvítárvatn in central Iceland. In the absence of primitive tholeiitic eruptions (MgO > 7 wt%) within the Eastern Volcanic Zone (EVZ) of Iceland, these crystal and inclusion compositions provide an important insight into magmatic processes in this volcanically productive region. Matrix glass compositions show strong similarities with glass compositions from the AD 1783–1784 Laki eruption, confirming the affinity of the tephra series with the Grímsvötn volcanic system. Macrocrysts can be divided into a primitive assemblage of zoned macrocryst cores (An78–An92, Mg#cpx = 82–87, Fo79.5–Fo87) and an evolved assemblage consisting of unzoned macrocrysts and the rims of zoned macrocrysts (An60–An68, Mg#cpx = 71–78, Fo70–Fo76). Although the evolved assemblage is close to being in equilibrium with the matrix glass, trace element disequilibrium between primitive and evolved assemblages indicates that they were derived from different distributions of mantle melt compositions. Juxtaposition of disequilibrium assemblages probably occurred during disaggregation of incompatible trace element-depleted mushes (mean La/Ybmelt = 2.1) into aphyric and incompatible trace element-enriched liquids (La/Ybmelt = 3.6) shortly before the growth of the evolved macrocryst assemblage. Post-entrapment modification of plagioclase-hosted melt inclusions has been minimal and high-Mg# inclusions record differentiation and mixing of compositionally variable mantle melts that are amongst the most primitive liquids known from the EVZ. Coupled high-field strength element (HFSE) depletion and incompatible trace element enrichment in a subset of primitive plagioclase-hosted melt inclusions can be accounted for by inclusion formation following plagioclase dissolution driven by interaction with plagioclase-undersaturated melts. Thermobarometric calculations indicate that final crystal–melt equilibration within the evolved assemblage occurred at ~1140 °C and 0.0–1.5 kbar. Considering the large volume of the erupted tephra and textural evidence for rapid crystallisation of the evolved assemblage, 0.0–1.5 kbar is considered unlikely to represent a pressure of long-term magma accumulation and storage. Multiple thermometers indicate that the primitive assemblage crystallised at high temperatures of 1240–1300 °C. Different barometers, however, return markedly different crystallisation depth estimates. Raw clinopyroxene–melt pressures of 5.5–7.5 kbar conflict with apparent melt inclusion entrapment pressures of 1.4 kbar. After applying a correction derived from published experimental data, clinopyroxene–melt equilibria return mid-crustal pressures of 4 ± 1.5 kbar, which are consistent with pressures estimated from the major element content of primitive melt inclusions. Long-term storage of primitive magmas in the mid-crust implies that low CO2 concentrations measured in primitive plagioclase-hosted inclusions (262–800 ppm) result from post-entrapment CO2 loss during transport through the shallow crust. In order to reconstruct basaltic plumbing system geometries from petrological data with greater confidence, mineral–melt equilibrium models require refinement at pressures of magma storage in Iceland. Further basalt phase equilibria experiments are thus needed within the crucial 1–7 kbar range. Article in Journal/Newspaper Iceland DataCite Metadata Store (German National Library of Science and Technology) Dewey ENVELOPE(-64.320,-64.320,-65.907,-65.907) Laki ENVELOPE(-18.237,-18.237,64.070,64.070) Saksunarvatn ENVELOPE(-7.150,-7.150,62.233,62.233) Grimsvotn ENVELOPE(-17.319,-17.319,64.416,64.416) Hvítárvatn ENVELOPE(-19.837,-19.837,64.612,64.612)