Behavior of B20 fuels in arctic conditions

Several renewable and sustainable liquid fuel alternatives are needed for different compression-ignition (CI) engine applications to reduce greenhouse gas (GHG) emissions and to ensure proper primary energy sources for the engines. One of the shortcomings of several bio oils and first generation bio...

Full description

Bibliographic Details
Main Authors: Sirviö, K., Niemi, S., Help, R., Heikkilä, S., Hiltunen, E.
Format: Text
Language:English
Published: Agronomy Research 2019
Subjects:
Online Access:https://dx.doi.org/10.15159/ar.19.096
https://dspace.emu.ee/xmlui/handle/10492/4766
id ftdatacite:10.15159/ar.19.096
record_format openpolar
spelling ftdatacite:10.15159/ar.19.096 2023-05-15T14:54:42+02:00 Behavior of B20 fuels in arctic conditions Sirviö, K. Niemi, S. Help, R. Heikkilä, S. Hiltunen, E. 2019 PDF https://dx.doi.org/10.15159/ar.19.096 https://dspace.emu.ee/xmlui/handle/10492/4766 en eng Agronomy Research Copyright 2009 by Estonian University of Life Sciences, Latvia University of Agriculture, Aleksandras Stulginskis University, Lithuanian Research Centre for Agriculture and Forestry. No part of this publication may be reproduced or transmitted in any form, or by any means, electronic or mechanical, incl. photocopying, electronic recording, or otherwise without the prior written permission from the Estonian University of Life Sciences, Latvia University of Agriculture, Aleksandras Stulginskis University, Lithuanian Research Centre for Agriculture and Forestry http://agronomy.emu.ee/journal-information alternative fuels fuel blends storage conditions arctic conditions fuel stability medium-speed engines article Text Article article-journal ScholarlyArticle 2019 ftdatacite https://doi.org/10.15159/ar.19.096 2021-11-05T12:55:41Z Several renewable and sustainable liquid fuel alternatives are needed for different compression-ignition (CI) engine applications to reduce greenhouse gas (GHG) emissions and to ensure proper primary energy sources for the engines. One of the shortcomings of several bio oils and first generation biodiesels has been their cold properties. Still, the need for alternative fuels is also present in arctic areas where the storing of the fuels may become problematic. The main aim of the current study was to determine how the storage related properties of fuel blends change if the fuels first freeze and then melt again. The samples were analyzed three times: as fresh, and after the first and second freezing-melting phase transitions. The share of renewables within the blends was 20 vol-%. Rapeseed methyl ester (RME) and animal-fat based methyl ester (AFME) were blended with LFO in a ratio of 80 vol-% of LFO and 20-vol% of RME or AFME. The investigated and compared properties were the FAME content of the neat FAMEs, and kinematic viscosity, density, oxidation stability index, and acid number of the blends. Cold filter plugging point was measured for AFME and its blend. According to the results, the quality of the FAMEs and their blends did not change significantly during the freezing over. The freezingmelting phase transition seems, thus, not to be as big a threat to the fuel quality as the high temperatures are. According to the results of this study, the studied fuels were feasible after the freezing-melting phase transition. Text Arctic DataCite Metadata Store (German National Library of Science and Technology) Arctic
institution Open Polar
collection DataCite Metadata Store (German National Library of Science and Technology)
op_collection_id ftdatacite
language English
topic alternative fuels
fuel blends
storage conditions
arctic conditions
fuel stability
medium-speed engines
article
spellingShingle alternative fuels
fuel blends
storage conditions
arctic conditions
fuel stability
medium-speed engines
article
Sirviö, K.
Niemi, S.
Help, R.
Heikkilä, S.
Hiltunen, E.
Behavior of B20 fuels in arctic conditions
topic_facet alternative fuels
fuel blends
storage conditions
arctic conditions
fuel stability
medium-speed engines
article
description Several renewable and sustainable liquid fuel alternatives are needed for different compression-ignition (CI) engine applications to reduce greenhouse gas (GHG) emissions and to ensure proper primary energy sources for the engines. One of the shortcomings of several bio oils and first generation biodiesels has been their cold properties. Still, the need for alternative fuels is also present in arctic areas where the storing of the fuels may become problematic. The main aim of the current study was to determine how the storage related properties of fuel blends change if the fuels first freeze and then melt again. The samples were analyzed three times: as fresh, and after the first and second freezing-melting phase transitions. The share of renewables within the blends was 20 vol-%. Rapeseed methyl ester (RME) and animal-fat based methyl ester (AFME) were blended with LFO in a ratio of 80 vol-% of LFO and 20-vol% of RME or AFME. The investigated and compared properties were the FAME content of the neat FAMEs, and kinematic viscosity, density, oxidation stability index, and acid number of the blends. Cold filter plugging point was measured for AFME and its blend. According to the results, the quality of the FAMEs and their blends did not change significantly during the freezing over. The freezingmelting phase transition seems, thus, not to be as big a threat to the fuel quality as the high temperatures are. According to the results of this study, the studied fuels were feasible after the freezing-melting phase transition.
format Text
author Sirviö, K.
Niemi, S.
Help, R.
Heikkilä, S.
Hiltunen, E.
author_facet Sirviö, K.
Niemi, S.
Help, R.
Heikkilä, S.
Hiltunen, E.
author_sort Sirviö, K.
title Behavior of B20 fuels in arctic conditions
title_short Behavior of B20 fuels in arctic conditions
title_full Behavior of B20 fuels in arctic conditions
title_fullStr Behavior of B20 fuels in arctic conditions
title_full_unstemmed Behavior of B20 fuels in arctic conditions
title_sort behavior of b20 fuels in arctic conditions
publisher Agronomy Research
publishDate 2019
url https://dx.doi.org/10.15159/ar.19.096
https://dspace.emu.ee/xmlui/handle/10492/4766
geographic Arctic
geographic_facet Arctic
genre Arctic
genre_facet Arctic
op_rights Copyright 2009 by Estonian University of Life Sciences, Latvia University of Agriculture, Aleksandras Stulginskis University, Lithuanian Research Centre for Agriculture and Forestry. No part of this publication may be reproduced or transmitted in any form, or by any means, electronic or mechanical, incl. photocopying, electronic recording, or otherwise without the prior written permission from the Estonian University of Life Sciences, Latvia University of Agriculture, Aleksandras Stulginskis University, Lithuanian Research Centre for Agriculture and Forestry
http://agronomy.emu.ee/journal-information
op_doi https://doi.org/10.15159/ar.19.096
_version_ 1766326462717100032