A unified Eulerian variational framework for multiphase fluid-structure interaction ...

Multiphase fluid-structure interaction (FSI) involving multiphase flow and contact between immersed solids is omnipresent in numerous processes in nature, biology, and engineering applications. Examples include bio-inspired avian-aquatic vehicles, aneurysm and cardiovascular diseases in biomedical e...

Full description

Bibliographic Details
Main Author: Mao, Xiaoyu
Format: Text
Language:English
Published: University of British Columbia 2023
Subjects:
Online Access:https://dx.doi.org/10.14288/1.0435629
https://doi.library.ubc.ca/10.14288/1.0435629
Description
Summary:Multiphase fluid-structure interaction (FSI) involving multiphase flow and contact between immersed solids is omnipresent in numerous processes in nature, biology, and engineering applications. Examples include bio-inspired avian-aquatic vehicles, aneurysm and cardiovascular diseases in biomedical engineering, and marine vessels in ocean engineering. Of particular interest to the present study is the ice-going ships in the Arctic environment. Numerical simulation of this complex system involves modeling dynamics of disparate materials, evolving multiphase interfaces, and collisions between solids. The development of a novel three-dimensional multiphase and multiphysics computational framework based on unified continuum mechanics laws is the focus of the present dissertation. In the proposed numerical framework, we employ a fully Eulerian description for the continua of different phases, which facilitates topological changes of their interfaces during the evolution and contact processes. The interfaces and ...