Conversion of CO₂ and saline water to value-added chemicals and desalinated water ...
Two electrochemical approaches that simultaneously convert carbon dioxide and high salinity brines to desalinated water and value-added chemicals in the form of inorganic acids and carbonate salts were demonstrated. In the first method, a multi-compartment electrodialysis cell module using anion exc...
Main Author: | |
---|---|
Format: | Text |
Language: | English |
Published: |
University of British Columbia
2020
|
Subjects: | |
Online Access: | https://dx.doi.org/10.14288/1.0394832 https://doi.library.ubc.ca/10.14288/1.0394832 |
Summary: | Two electrochemical approaches that simultaneously convert carbon dioxide and high salinity brines to desalinated water and value-added chemicals in the form of inorganic acids and carbonate salts were demonstrated. In the first method, a multi-compartment electrodialysis cell module using anion exchange and cation exchange membranes, and a Pt/Ir-coated Ti anode and Ti mesh cathode was used to produce HCl and NaHCO₃ products from a carbonic acid and sodium chloride solution. Under an applied voltage inorganic carbon salts and acids were produced. A mathematical model for this electrodialysis cell configuration was developed to better understand limitations within the cell which were not available from experimental data including concentration profiles within the intra-membrane channels. In the second method, a first of a kind 5-compartment electrochemical cell including an anode, cathode and three electro-dialytic compartments was used. Water was converted to oxygen and protons at the anode while gaseous O₂ ... |
---|