On the filtration mechanisms and oral anatomy of lunge-feeding baleen whales ...
Here we endeavoured to quantify the filtration mechanics of rorquals and the material properties of baleen “gums” (termed zwischensubstanz) by examining and testing the baleen of a fin whale (Balaenoptera physalus). It was hypothesized that fin whales use cross-flow filtration to filter krill from e...
Main Author: | |
---|---|
Format: | Text |
Language: | English |
Published: |
University of British Columbia
2011
|
Subjects: | |
Online Access: | https://dx.doi.org/10.14288/1.0072276 https://doi.library.ubc.ca/10.14288/1.0072276 |
Summary: | Here we endeavoured to quantify the filtration mechanics of rorquals and the material properties of baleen “gums” (termed zwischensubstanz) by examining and testing the baleen of a fin whale (Balaenoptera physalus). It was hypothesized that fin whales use cross-flow filtration to filter krill from engulfed seawater such that krill and other debris do not become entangled in the baleen fringes. Cross-flow filtration was proposed as an alternate mechanism to dead-end sieving since it would create a highly concentrated suspension of krill inside the mouth (potentially at the oesophageal opening) and would also not require krill to contact the baleen, eliminating clogging and filtering efficiency losses. We tested filtration mechanisms by placing a sixty-two centimetre section of baleen from a fin whale in a circular water tank and imitating the whale’s environment through various flow scenarios and setups. It was not conclusively determined whether cross-flow filtration is the mechanism used by fin whales, but ... |
---|