Machine Learning-Aided Sea Ice Monitoring Using Feature Sequences Extracted from Spaceborne GNSS-Reflectometry Data ...

Two effective machine learning-aided sea ice monitoring methods are investigated using 42 months of spaceborne Global Navigation Satellite System-Reflectometry (GNSS-R) data collected by the TechDemoSat-1 (TDS-1). The two-dimensional delay waveforms with different Doppler spread characteristics are...

Full description

Bibliographic Details
Main Authors: Zhu, Yongchao, Tao, Tingye, Yu, Kegen, Qu, Xiaochuan, Li, Shuiping, Wickert, Jens, Semmling, Maximilian
Format: Article in Journal/Newspaper
Language:unknown
Published: Technische Universität Berlin 2020
Subjects:
Online Access:https://dx.doi.org/10.14279/depositonce-11139
https://depositonce.tu-berlin.de/handle/11303/12263
_version_ 1821755679245860864
author Zhu, Yongchao
Tao, Tingye
Yu, Kegen
Qu, Xiaochuan
Li, Shuiping
Wickert, Jens
Semmling, Maximilian
author_facet Zhu, Yongchao
Tao, Tingye
Yu, Kegen
Qu, Xiaochuan
Li, Shuiping
Wickert, Jens
Semmling, Maximilian
author_sort Zhu, Yongchao
collection DataCite
description Two effective machine learning-aided sea ice monitoring methods are investigated using 42 months of spaceborne Global Navigation Satellite System-Reflectometry (GNSS-R) data collected by the TechDemoSat-1 (TDS-1). The two-dimensional delay waveforms with different Doppler spread characteristics are applied to extract six features, which are combined to monitor sea ice using the decision tree (DT) and random forest (RF) algorithms. Firstly, the feature sequences are used as input variables and sea ice concentration (SIC) data from the Advanced Microwave Space Radiometer-2 (AMSR-2) are applied as targeted output to train the sea ice monitoring model. Hereafter, the performance of the proposed method is evaluated through comparing with the sea ice edge (SIE) data from the Special Sensor Microwave Imager Sounder (SSMIS) data. The DT- and RF-based methods achieve an overall accuracy of 97.51% and 98.03%, respectively, in the Arctic region and 95.46% and 95.96%, respectively, in the Antarctic region. The DT- and ...
format Article in Journal/Newspaper
genre Antarc*
Antarctic
Arctic
Sea ice
genre_facet Antarc*
Antarctic
Arctic
Sea ice
geographic Antarctic
Arctic
The Antarctic
geographic_facet Antarctic
Arctic
The Antarctic
id ftdatacite:10.14279/depositonce-11139
institution Open Polar
language unknown
op_collection_id ftdatacite
op_doi https://doi.org/10.14279/depositonce-11139
op_rights Creative Commons Attribution 4.0 International
https://creativecommons.org/licenses/by/4.0/legalcode
cc-by-4.0
publishDate 2020
publisher Technische Universität Berlin
record_format openpolar
spelling ftdatacite:10.14279/depositonce-11139 2025-01-16T19:24:38+00:00 Machine Learning-Aided Sea Ice Monitoring Using Feature Sequences Extracted from Spaceborne GNSS-Reflectometry Data ... Zhu, Yongchao Tao, Tingye Yu, Kegen Qu, Xiaochuan Li, Shuiping Wickert, Jens Semmling, Maximilian 2020 https://dx.doi.org/10.14279/depositonce-11139 https://depositonce.tu-berlin.de/handle/11303/12263 unknown Technische Universität Berlin Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode cc-by-4.0 620 Ingenieurwissenschaften und zugeordnete Tätigkeiten Delay-Doppler Map Global Navigation Satellite System-Reflectometry decision tree random forest sea ice monitoring CreativeWork article 2020 ftdatacite https://doi.org/10.14279/depositonce-11139 2024-11-28T12:48:44Z Two effective machine learning-aided sea ice monitoring methods are investigated using 42 months of spaceborne Global Navigation Satellite System-Reflectometry (GNSS-R) data collected by the TechDemoSat-1 (TDS-1). The two-dimensional delay waveforms with different Doppler spread characteristics are applied to extract six features, which are combined to monitor sea ice using the decision tree (DT) and random forest (RF) algorithms. Firstly, the feature sequences are used as input variables and sea ice concentration (SIC) data from the Advanced Microwave Space Radiometer-2 (AMSR-2) are applied as targeted output to train the sea ice monitoring model. Hereafter, the performance of the proposed method is evaluated through comparing with the sea ice edge (SIE) data from the Special Sensor Microwave Imager Sounder (SSMIS) data. The DT- and RF-based methods achieve an overall accuracy of 97.51% and 98.03%, respectively, in the Arctic region and 95.46% and 95.96%, respectively, in the Antarctic region. The DT- and ... Article in Journal/Newspaper Antarc* Antarctic Arctic Sea ice DataCite Antarctic Arctic The Antarctic
spellingShingle 620 Ingenieurwissenschaften und zugeordnete Tätigkeiten
Delay-Doppler Map
Global Navigation Satellite System-Reflectometry
decision tree
random forest
sea ice monitoring
Zhu, Yongchao
Tao, Tingye
Yu, Kegen
Qu, Xiaochuan
Li, Shuiping
Wickert, Jens
Semmling, Maximilian
Machine Learning-Aided Sea Ice Monitoring Using Feature Sequences Extracted from Spaceborne GNSS-Reflectometry Data ...
title Machine Learning-Aided Sea Ice Monitoring Using Feature Sequences Extracted from Spaceborne GNSS-Reflectometry Data ...
title_full Machine Learning-Aided Sea Ice Monitoring Using Feature Sequences Extracted from Spaceborne GNSS-Reflectometry Data ...
title_fullStr Machine Learning-Aided Sea Ice Monitoring Using Feature Sequences Extracted from Spaceborne GNSS-Reflectometry Data ...
title_full_unstemmed Machine Learning-Aided Sea Ice Monitoring Using Feature Sequences Extracted from Spaceborne GNSS-Reflectometry Data ...
title_short Machine Learning-Aided Sea Ice Monitoring Using Feature Sequences Extracted from Spaceborne GNSS-Reflectometry Data ...
title_sort machine learning-aided sea ice monitoring using feature sequences extracted from spaceborne gnss-reflectometry data ...
topic 620 Ingenieurwissenschaften und zugeordnete Tätigkeiten
Delay-Doppler Map
Global Navigation Satellite System-Reflectometry
decision tree
random forest
sea ice monitoring
topic_facet 620 Ingenieurwissenschaften und zugeordnete Tätigkeiten
Delay-Doppler Map
Global Navigation Satellite System-Reflectometry
decision tree
random forest
sea ice monitoring
url https://dx.doi.org/10.14279/depositonce-11139
https://depositonce.tu-berlin.de/handle/11303/12263