Machine Learning-Aided Sea Ice Monitoring Using Feature Sequences Extracted from Spaceborne GNSS-Reflectometry Data ...
Two effective machine learning-aided sea ice monitoring methods are investigated using 42 months of spaceborne Global Navigation Satellite System-Reflectometry (GNSS-R) data collected by the TechDemoSat-1 (TDS-1). The two-dimensional delay waveforms with different Doppler spread characteristics are...
Main Authors: | , , , , , , |
---|---|
Format: | Article in Journal/Newspaper |
Language: | unknown |
Published: |
Technische Universität Berlin
2020
|
Subjects: | |
Online Access: | https://dx.doi.org/10.14279/depositonce-11139 https://depositonce.tu-berlin.de/handle/11303/12263 |
id |
ftdatacite:10.14279/depositonce-11139 |
---|---|
record_format |
openpolar |
spelling |
ftdatacite:10.14279/depositonce-11139 2023-08-27T04:05:44+02:00 Machine Learning-Aided Sea Ice Monitoring Using Feature Sequences Extracted from Spaceborne GNSS-Reflectometry Data ... Zhu, Yongchao Tao, Tingye Yu, Kegen Qu, Xiaochuan Li, Shuiping Wickert, Jens Semmling, Maximilian 2020 https://dx.doi.org/10.14279/depositonce-11139 https://depositonce.tu-berlin.de/handle/11303/12263 unknown Technische Universität Berlin Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode cc-by-4.0 620 Ingenieurwissenschaften und zugeordnete Tätigkeiten Delay-Doppler Map Global Navigation Satellite System-Reflectometry decision tree random forest sea ice monitoring CreativeWork article 2020 ftdatacite https://doi.org/10.14279/depositonce-11139 2023-08-07T14:24:23Z Two effective machine learning-aided sea ice monitoring methods are investigated using 42 months of spaceborne Global Navigation Satellite System-Reflectometry (GNSS-R) data collected by the TechDemoSat-1 (TDS-1). The two-dimensional delay waveforms with different Doppler spread characteristics are applied to extract six features, which are combined to monitor sea ice using the decision tree (DT) and random forest (RF) algorithms. Firstly, the feature sequences are used as input variables and sea ice concentration (SIC) data from the Advanced Microwave Space Radiometer-2 (AMSR-2) are applied as targeted output to train the sea ice monitoring model. Hereafter, the performance of the proposed method is evaluated through comparing with the sea ice edge (SIE) data from the Special Sensor Microwave Imager Sounder (SSMIS) data. The DT- and RF-based methods achieve an overall accuracy of 97.51% and 98.03%, respectively, in the Arctic region and 95.46% and 95.96%, respectively, in the Antarctic region. The DT- and ... Article in Journal/Newspaper Antarc* Antarctic Arctic Sea ice DataCite Metadata Store (German National Library of Science and Technology) Arctic Antarctic The Antarctic |
institution |
Open Polar |
collection |
DataCite Metadata Store (German National Library of Science and Technology) |
op_collection_id |
ftdatacite |
language |
unknown |
topic |
620 Ingenieurwissenschaften und zugeordnete Tätigkeiten Delay-Doppler Map Global Navigation Satellite System-Reflectometry decision tree random forest sea ice monitoring |
spellingShingle |
620 Ingenieurwissenschaften und zugeordnete Tätigkeiten Delay-Doppler Map Global Navigation Satellite System-Reflectometry decision tree random forest sea ice monitoring Zhu, Yongchao Tao, Tingye Yu, Kegen Qu, Xiaochuan Li, Shuiping Wickert, Jens Semmling, Maximilian Machine Learning-Aided Sea Ice Monitoring Using Feature Sequences Extracted from Spaceborne GNSS-Reflectometry Data ... |
topic_facet |
620 Ingenieurwissenschaften und zugeordnete Tätigkeiten Delay-Doppler Map Global Navigation Satellite System-Reflectometry decision tree random forest sea ice monitoring |
description |
Two effective machine learning-aided sea ice monitoring methods are investigated using 42 months of spaceborne Global Navigation Satellite System-Reflectometry (GNSS-R) data collected by the TechDemoSat-1 (TDS-1). The two-dimensional delay waveforms with different Doppler spread characteristics are applied to extract six features, which are combined to monitor sea ice using the decision tree (DT) and random forest (RF) algorithms. Firstly, the feature sequences are used as input variables and sea ice concentration (SIC) data from the Advanced Microwave Space Radiometer-2 (AMSR-2) are applied as targeted output to train the sea ice monitoring model. Hereafter, the performance of the proposed method is evaluated through comparing with the sea ice edge (SIE) data from the Special Sensor Microwave Imager Sounder (SSMIS) data. The DT- and RF-based methods achieve an overall accuracy of 97.51% and 98.03%, respectively, in the Arctic region and 95.46% and 95.96%, respectively, in the Antarctic region. The DT- and ... |
format |
Article in Journal/Newspaper |
author |
Zhu, Yongchao Tao, Tingye Yu, Kegen Qu, Xiaochuan Li, Shuiping Wickert, Jens Semmling, Maximilian |
author_facet |
Zhu, Yongchao Tao, Tingye Yu, Kegen Qu, Xiaochuan Li, Shuiping Wickert, Jens Semmling, Maximilian |
author_sort |
Zhu, Yongchao |
title |
Machine Learning-Aided Sea Ice Monitoring Using Feature Sequences Extracted from Spaceborne GNSS-Reflectometry Data ... |
title_short |
Machine Learning-Aided Sea Ice Monitoring Using Feature Sequences Extracted from Spaceborne GNSS-Reflectometry Data ... |
title_full |
Machine Learning-Aided Sea Ice Monitoring Using Feature Sequences Extracted from Spaceborne GNSS-Reflectometry Data ... |
title_fullStr |
Machine Learning-Aided Sea Ice Monitoring Using Feature Sequences Extracted from Spaceborne GNSS-Reflectometry Data ... |
title_full_unstemmed |
Machine Learning-Aided Sea Ice Monitoring Using Feature Sequences Extracted from Spaceborne GNSS-Reflectometry Data ... |
title_sort |
machine learning-aided sea ice monitoring using feature sequences extracted from spaceborne gnss-reflectometry data ... |
publisher |
Technische Universität Berlin |
publishDate |
2020 |
url |
https://dx.doi.org/10.14279/depositonce-11139 https://depositonce.tu-berlin.de/handle/11303/12263 |
geographic |
Arctic Antarctic The Antarctic |
geographic_facet |
Arctic Antarctic The Antarctic |
genre |
Antarc* Antarctic Arctic Sea ice |
genre_facet |
Antarc* Antarctic Arctic Sea ice |
op_rights |
Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode cc-by-4.0 |
op_doi |
https://doi.org/10.14279/depositonce-11139 |
_version_ |
1775357478788136960 |