Seasonal δ³⁴S variations in two high elevation snow pits measured by ³³S–³⁶S double spike thermal ionization mass spectrometry ...

δ³⁴S and sulfate concentrations were determined in snow pit samples using a thermal ionization mass spectrometric technique capable of 0.2‰ accuracy and requires ≈5 μg (0.16 μmol) natural S. The technique utilizes a ³³S–³⁶S double spike for instrumental mass fractionation correction, and has been ap...

Full description

Bibliographic Details
Main Authors: Mann, Jacqueline L., Shuman, Christopher A., Kelly, W. Robert, Kreutz, Karl J.
Format: Article in Journal/Newspaper
Language:English
Published: Elsevier 2008
Subjects:
Online Access:https://dx.doi.org/10.13016/m2inun-jkdm
https://mdsoar.org/handle/11603/24287
Description
Summary:δ³⁴S and sulfate concentrations were determined in snow pit samples using a thermal ionization mass spectrometric technique capable of 0.2‰ accuracy and requires ≈5 μg (0.16 μmol) natural S. The technique utilizes a ³³S–³⁶S double spike for instrumental mass fractionation correction, and has been applied to snow pit samples collected from the Inilchek Glacier, Kyrgyzstan and from Summit, Greenland. These δ³⁴S determinations provide the first high-resolution seasonal data for these sites, and are used to estimate seasonal sulfate sources. Deuterium (δD) and oxygen (δ¹⁸O) isotope data show that the Inilchek and Summit snow pit samples represent precipitation over ≈20 months. The δ³⁴S values for the Inilchek ranged from +2.6 ± 0.4‰ to +7.6 ± 0.4‰ on sample sizes ranging from 0.3 to 1.8 μmol S. δ³⁴S values for Greenland ranged from +3.6 ± 0.7‰ to +13.3 ± 5‰ for sample sizes ranging from 0.05 to 0.29 μmol S. The SO₄²⁻ concentration ranged from 92.6 ± 0.4 to 1049 ± 4 ng/g for the Inilchek and 18 ± 9 to 93 ± 6 ng/g ...