Parameterization of CryoSat-2 Radar Waveforms Across the Greenland Ice Sheet
Geodetic surface mass balance calculations regularly rely on satellite radar altimeters such as CryoSat-2 to understand elevation and volume changes of the Greenland Ice Sheet (GrIS). However, the impact of changing GrIS shallow subsurface stratigraphic conditions on CryoSat-2 elevation products is...
Main Author: | |
---|---|
Format: | Text |
Language: | unknown |
Published: |
Dartmouth Digital Commons
2023
|
Subjects: | |
Online Access: | https://digitalcommons.dartmouth.edu/masters_theses/111 https://digitalcommons.dartmouth.edu/context/masters_theses/article/1080/viewcontent/DH_Alexander_Ronan_Msc_Earth_Science.pdf |
id |
ftdartmouthcoll:oai:digitalcommons.dartmouth.edu:masters_theses-1080 |
---|---|
record_format |
openpolar |
spelling |
ftdartmouthcoll:oai:digitalcommons.dartmouth.edu:masters_theses-1080 2023-11-12T04:17:49+01:00 Parameterization of CryoSat-2 Radar Waveforms Across the Greenland Ice Sheet Ronan, Alexander Clark 2023-06-10T07:00:00Z application/pdf https://digitalcommons.dartmouth.edu/masters_theses/111 https://digitalcommons.dartmouth.edu/context/masters_theses/article/1080/viewcontent/DH_Alexander_Ronan_Msc_Earth_Science.pdf unknown Dartmouth Digital Commons https://digitalcommons.dartmouth.edu/masters_theses/111 https://digitalcommons.dartmouth.edu/context/masters_theses/article/1080/viewcontent/DH_Alexander_Ronan_Msc_Earth_Science.pdf Dartmouth College Master’s Theses Greenland Ice Sheet CryoSat-2 Radar Altimetry Waveforms Remote Sensing Glaciology text 2023 ftdartmouthcoll 2023-10-15T16:59:19Z Geodetic surface mass balance calculations regularly rely on satellite radar altimeters such as CryoSat-2 to understand elevation and volume changes of the Greenland Ice Sheet (GrIS). However, the impact of changing GrIS shallow subsurface stratigraphic conditions on CryoSat-2 elevation products is poorly understood. We seek to investigate the long-term impacts of changing surface and shallow subsurface conditions on CryoSat-2 Level 2 elevation products derived from the Offset Center of Gravity (OCOG), Ocean - Customer Furnished Item (CFI), and University College London (UCL) Land-Ice retracking algorithms through the analysis of radar waveform characteristics. We further investigate time series from 2010 to 2021 of Leading-Edge Width (LeW), Riemann Sum Integral (RSI), and Trailing-Edge Slope (TeS) metrics calculated from Level 1B CryoSat-2 radar waveforms. We use Bayesian Model averaging and changepoint detection to compare equivalent time series in elevations derived from CryoSat-2’s three retracking algorithms. This workflow is performed at five GrIS locations representing different glaciological regimes and compared with previous literature. We note that melting events, snowpack recovery, and potentially anomalous snow accumulation and high-speed winds are evident in GrIS dry snow zone Level 1B LeW time series. We determine that Level 1B LeW has an inverse relationship with the model-based retracked Level 2 elevations. Future work is needed to understand the impacts varying GrIS snow accumulation rates and high-speed wind events on the elevation products, as well as to create retracking algorithms that are more resistant to abrupt changes in the shallow subsurface. Text Greenland Ice Sheet Dartmouth Digital Commons (Dartmouth College) Greenland |
institution |
Open Polar |
collection |
Dartmouth Digital Commons (Dartmouth College) |
op_collection_id |
ftdartmouthcoll |
language |
unknown |
topic |
Greenland Ice Sheet CryoSat-2 Radar Altimetry Waveforms Remote Sensing Glaciology |
spellingShingle |
Greenland Ice Sheet CryoSat-2 Radar Altimetry Waveforms Remote Sensing Glaciology Ronan, Alexander Clark Parameterization of CryoSat-2 Radar Waveforms Across the Greenland Ice Sheet |
topic_facet |
Greenland Ice Sheet CryoSat-2 Radar Altimetry Waveforms Remote Sensing Glaciology |
description |
Geodetic surface mass balance calculations regularly rely on satellite radar altimeters such as CryoSat-2 to understand elevation and volume changes of the Greenland Ice Sheet (GrIS). However, the impact of changing GrIS shallow subsurface stratigraphic conditions on CryoSat-2 elevation products is poorly understood. We seek to investigate the long-term impacts of changing surface and shallow subsurface conditions on CryoSat-2 Level 2 elevation products derived from the Offset Center of Gravity (OCOG), Ocean - Customer Furnished Item (CFI), and University College London (UCL) Land-Ice retracking algorithms through the analysis of radar waveform characteristics. We further investigate time series from 2010 to 2021 of Leading-Edge Width (LeW), Riemann Sum Integral (RSI), and Trailing-Edge Slope (TeS) metrics calculated from Level 1B CryoSat-2 radar waveforms. We use Bayesian Model averaging and changepoint detection to compare equivalent time series in elevations derived from CryoSat-2’s three retracking algorithms. This workflow is performed at five GrIS locations representing different glaciological regimes and compared with previous literature. We note that melting events, snowpack recovery, and potentially anomalous snow accumulation and high-speed winds are evident in GrIS dry snow zone Level 1B LeW time series. We determine that Level 1B LeW has an inverse relationship with the model-based retracked Level 2 elevations. Future work is needed to understand the impacts varying GrIS snow accumulation rates and high-speed wind events on the elevation products, as well as to create retracking algorithms that are more resistant to abrupt changes in the shallow subsurface. |
format |
Text |
author |
Ronan, Alexander Clark |
author_facet |
Ronan, Alexander Clark |
author_sort |
Ronan, Alexander Clark |
title |
Parameterization of CryoSat-2 Radar Waveforms Across the Greenland Ice Sheet |
title_short |
Parameterization of CryoSat-2 Radar Waveforms Across the Greenland Ice Sheet |
title_full |
Parameterization of CryoSat-2 Radar Waveforms Across the Greenland Ice Sheet |
title_fullStr |
Parameterization of CryoSat-2 Radar Waveforms Across the Greenland Ice Sheet |
title_full_unstemmed |
Parameterization of CryoSat-2 Radar Waveforms Across the Greenland Ice Sheet |
title_sort |
parameterization of cryosat-2 radar waveforms across the greenland ice sheet |
publisher |
Dartmouth Digital Commons |
publishDate |
2023 |
url |
https://digitalcommons.dartmouth.edu/masters_theses/111 https://digitalcommons.dartmouth.edu/context/masters_theses/article/1080/viewcontent/DH_Alexander_Ronan_Msc_Earth_Science.pdf |
geographic |
Greenland |
geographic_facet |
Greenland |
genre |
Greenland Ice Sheet |
genre_facet |
Greenland Ice Sheet |
op_source |
Dartmouth College Master’s Theses |
op_relation |
https://digitalcommons.dartmouth.edu/masters_theses/111 https://digitalcommons.dartmouth.edu/context/masters_theses/article/1080/viewcontent/DH_Alexander_Ronan_Msc_Earth_Science.pdf |
_version_ |
1782334592158531584 |