Data from: Sixty-year legacy of human impacts on a high Arctic ecosystem
The high Arctic is the world's fasting warming biome, allowing access to sections of previously inaccessible land for resource extraction. Starting in 2011, exploration of one of the Earth's largest undeveloped coal seams was initiated in a relatively pristine, polar desert environment in...
Main Authors: | , |
---|---|
Language: | unknown |
Published: |
2015
|
Subjects: | |
Online Access: | http://nbn-resolving.org/urn:nbn:nl:ui:13-5p-1aaa https://easy.dans.knaw.nl/ui/datasets/id/easy-dataset:91961 |
Summary: | The high Arctic is the world's fasting warming biome, allowing access to sections of previously inaccessible land for resource extraction. Starting in 2011, exploration of one of the Earth's largest undeveloped coal seams was initiated in a relatively pristine, polar desert environment in the Canadian high Arctic. Due to the relative lack of historic anthropogenic disturbance, significant gaps in knowledge exist on how the landscape will be impacted by development. At an abandoned airstrip located near the area of current exploration, we used a disturbance case–control approach to evaluate the long-term ecological consequences of high Arctic infrastructure disturbance to vegetation and sensitive, ice-rich permafrost. We quantified: (i) long-term effects on vegetation diversity, soil nutrients, and abiotic ground conditions and (ii) the alteration of the ground surface topography and legacy of subsurface thermal changes. We found that in over sixty years since abandonment, the disturbed landscape has not recovered to initial conditions but instead reflects a disturbance-initiated succession towards a different stable-state community. Microtopography greatly influenced recovery patterns in the landscape. The terrain overlaying buried ice (ice wedge polygon troughs) was the most sensitive to disturbance and had a different species composition, decreased plot-level species richness, significant increases in vegetation cover, and a drastically reduced seasonal fluctuation in subsurface temperatures. In contrast, disturbed polygon tops showed resiliency in vegetation recovery, but still had remarkable increases of depth of seasonal soil thaw (active layer). Synthesis and applications. Our results indicate that disturbance effects differ depending on microtopographic features, leading to an increased patchiness of the landscape as found elsewhere in the Arctic. Managers who wish to lessen their impact on high Arctic environments should avoid areas of sensitive, ice-rich permafrost, constrain the geographic scale of ... |
---|