Data from: Cold tadpoles from Arctic environments waste less nutrients – high gross growth efficiencies lead to low consumer-mediated nutrient recycling in the North

1. Endothermic organisms can adapt to short growing seasons, low temperatures and nutrient limitation by developing high growth rates and high gross growth efficiencies (GGEs). Animals with high GGEs are better at assimilating limiting nutrients and thus should recycle (or lose) fewer nutrients. Lon...

Full description

Bibliographic Details
Main Authors: Liess, Antonia, Lind, Martin I., Guo, Junwen, Rowe, Owen
Language:unknown
Published: 2015
Subjects:
Online Access:http://nbn-resolving.org/urn:nbn:nl:ui:13-49-xig6
https://easy.dans.knaw.nl/ui/datasets/id/easy-dataset:90246
id ftdans:oai:easy.dans.knaw.nl:easy-dataset:90246
record_format openpolar
spelling ftdans:oai:easy.dans.knaw.nl:easy-dataset:90246 2023-07-02T03:31:18+02:00 Data from: Cold tadpoles from Arctic environments waste less nutrients – high gross growth efficiencies lead to low consumer-mediated nutrient recycling in the North Liess, Antonia Lind, Martin I. Guo, Junwen Rowe, Owen 2015-08-06T19:13:12.000+02:00 http://nbn-resolving.org/urn:nbn:nl:ui:13-49-xig6 https://easy.dans.knaw.nl/ui/datasets/id/easy-dataset:90246 unknown doi:10.5061/dryad.dt63p/1 doi:10.5061/dryad.dt63p/2 doi:10.1111/1365-2656.12426 PMID:26239271 http://nbn-resolving.org/urn:nbn:nl:ui:13-49-xig6 doi:10.5061/dryad.dt63p https://easy.dans.knaw.nl/ui/datasets/id/easy-dataset:90246 OPEN_ACCESS: The data are archived in Easy, they are accessible elsewhere through the DOI https://dans.knaw.nl/en/about/organisation-and-policy/legal-information/DANSLicence.pdf Life sciences medicine and health care 2015 ftdans https://doi.org/10.5061/dryad.dt63p/110.5061/dryad.dt63p/210.1111/1365-2656.1242610.5061/dryad.dt63p 2023-06-13T13:19:44Z 1. Endothermic organisms can adapt to short growing seasons, low temperatures and nutrient limitation by developing high growth rates and high gross growth efficiencies (GGEs). Animals with high GGEs are better at assimilating limiting nutrients and thus should recycle (or lose) fewer nutrients. Longer guts in relation to body mass may facilitate higher GGE under resource limitation. 2. Within the context of ecological stoichiometry theory, this study combines ecology with evolution by relating latitudinal life-history adaptations in GGE, mediated by gut length, to its ecosystem consequences, such as consumer-mediated nutrient recycling. 3. In common garden experiments, we raised Rana temporaria tadpoles from two regions (Arctic/Boreal) under two temperature regimes (18/23 °C) crossed with two food quality treatments (high/low-nitrogen content). We measured tadpole GGEs, total nutrient loss (excretion + egestion) rates and gut length during ontogeny. 4. In order to maintain their elemental balance, tadpoles fed low-nitrogen (N) food had lower N excretion rates and higher total phosphorous (P) loss rates than tadpoles fed high-quality food. In accordance with expectations, Arctic tadpoles had higher GGEs and lower N loss rates than their low-latitude conspecifics, especially when fed low-N food, but only in ambient temperature treatments. Arctic tadpoles also had relatively longer guts than Boreal tadpoles during early development. 5. That temperature and food quality interacted with tadpole region of origin in affecting tadpole GGEs, nutrient loss rates and relative gut length, suggests evolved adaptation to temperature and resource differences. With future climate change, mean annual temperatures will increase. Additionally, species and genotypes will migrate north. This will change the functioning of Boreal and Arctic ecosystems by affecting consumer-mediated nutrient recycling and thus affect nutrient dynamics in general. Our study shows that evolved latitudinal adaption can change key ecosystem functions. Other/Unknown Material Arctic Climate change Data Archiving and Networked Services (DANS): EASY (KNAW - Koninklijke Nederlandse Akademie van Wetenschappen) Arctic Tadpole ENVELOPE(-65.317,-65.317,-65.933,-65.933)
institution Open Polar
collection Data Archiving and Networked Services (DANS): EASY (KNAW - Koninklijke Nederlandse Akademie van Wetenschappen)
op_collection_id ftdans
language unknown
topic Life sciences
medicine and health care
spellingShingle Life sciences
medicine and health care
Liess, Antonia
Lind, Martin I.
Guo, Junwen
Rowe, Owen
Data from: Cold tadpoles from Arctic environments waste less nutrients – high gross growth efficiencies lead to low consumer-mediated nutrient recycling in the North
topic_facet Life sciences
medicine and health care
description 1. Endothermic organisms can adapt to short growing seasons, low temperatures and nutrient limitation by developing high growth rates and high gross growth efficiencies (GGEs). Animals with high GGEs are better at assimilating limiting nutrients and thus should recycle (or lose) fewer nutrients. Longer guts in relation to body mass may facilitate higher GGE under resource limitation. 2. Within the context of ecological stoichiometry theory, this study combines ecology with evolution by relating latitudinal life-history adaptations in GGE, mediated by gut length, to its ecosystem consequences, such as consumer-mediated nutrient recycling. 3. In common garden experiments, we raised Rana temporaria tadpoles from two regions (Arctic/Boreal) under two temperature regimes (18/23 °C) crossed with two food quality treatments (high/low-nitrogen content). We measured tadpole GGEs, total nutrient loss (excretion + egestion) rates and gut length during ontogeny. 4. In order to maintain their elemental balance, tadpoles fed low-nitrogen (N) food had lower N excretion rates and higher total phosphorous (P) loss rates than tadpoles fed high-quality food. In accordance with expectations, Arctic tadpoles had higher GGEs and lower N loss rates than their low-latitude conspecifics, especially when fed low-N food, but only in ambient temperature treatments. Arctic tadpoles also had relatively longer guts than Boreal tadpoles during early development. 5. That temperature and food quality interacted with tadpole region of origin in affecting tadpole GGEs, nutrient loss rates and relative gut length, suggests evolved adaptation to temperature and resource differences. With future climate change, mean annual temperatures will increase. Additionally, species and genotypes will migrate north. This will change the functioning of Boreal and Arctic ecosystems by affecting consumer-mediated nutrient recycling and thus affect nutrient dynamics in general. Our study shows that evolved latitudinal adaption can change key ecosystem functions.
author Liess, Antonia
Lind, Martin I.
Guo, Junwen
Rowe, Owen
author_facet Liess, Antonia
Lind, Martin I.
Guo, Junwen
Rowe, Owen
author_sort Liess, Antonia
title Data from: Cold tadpoles from Arctic environments waste less nutrients – high gross growth efficiencies lead to low consumer-mediated nutrient recycling in the North
title_short Data from: Cold tadpoles from Arctic environments waste less nutrients – high gross growth efficiencies lead to low consumer-mediated nutrient recycling in the North
title_full Data from: Cold tadpoles from Arctic environments waste less nutrients – high gross growth efficiencies lead to low consumer-mediated nutrient recycling in the North
title_fullStr Data from: Cold tadpoles from Arctic environments waste less nutrients – high gross growth efficiencies lead to low consumer-mediated nutrient recycling in the North
title_full_unstemmed Data from: Cold tadpoles from Arctic environments waste less nutrients – high gross growth efficiencies lead to low consumer-mediated nutrient recycling in the North
title_sort data from: cold tadpoles from arctic environments waste less nutrients – high gross growth efficiencies lead to low consumer-mediated nutrient recycling in the north
publishDate 2015
url http://nbn-resolving.org/urn:nbn:nl:ui:13-49-xig6
https://easy.dans.knaw.nl/ui/datasets/id/easy-dataset:90246
long_lat ENVELOPE(-65.317,-65.317,-65.933,-65.933)
geographic Arctic
Tadpole
geographic_facet Arctic
Tadpole
genre Arctic
Climate change
genre_facet Arctic
Climate change
op_relation doi:10.5061/dryad.dt63p/1
doi:10.5061/dryad.dt63p/2
doi:10.1111/1365-2656.12426
PMID:26239271
http://nbn-resolving.org/urn:nbn:nl:ui:13-49-xig6
doi:10.5061/dryad.dt63p
https://easy.dans.knaw.nl/ui/datasets/id/easy-dataset:90246
op_rights OPEN_ACCESS: The data are archived in Easy, they are accessible elsewhere through the DOI
https://dans.knaw.nl/en/about/organisation-and-policy/legal-information/DANSLicence.pdf
op_doi https://doi.org/10.5061/dryad.dt63p/110.5061/dryad.dt63p/210.1111/1365-2656.1242610.5061/dryad.dt63p
_version_ 1770270678656745472