The interaction of biotic and abiotic factors at multiple spatial scales affects the variability of CO2 fluxes in polar environments

Climate change may turn Arctic biomes from carbon sinks into sources and vice versa, depending on the balance between gross ecosystem photosynthesis, ecosystem respiration (ER) and the resulting net ecosystem exchange (NEE). Photosynthetic capacity is species specific, and thus, it is important to q...

Full description

Bibliographic Details
Published in:Polar Biology
Main Authors: Cannone, N., Augusti, A., Malfasi, F., Pallozi, E., Calfapietra, C. (Carlo), Brugnoli, E.
Format: Article in Journal/Newspaper
Language:English
Published: 2016
Subjects:
Online Access:https://doi.org/10.1007/s00300-015-1883-9
http://hdl.handle.net/11104/0267617
id ftczacademyscien:oai:asep.lib.cas.cz:CavUnEpca/0469830
record_format openpolar
spelling ftczacademyscien:oai:asep.lib.cas.cz:CavUnEpca/0469830 2024-02-04T09:57:47+01:00 The interaction of biotic and abiotic factors at multiple spatial scales affects the variability of CO2 fluxes in polar environments Cannone, N. Augusti, A. Malfasi, F. Pallozi, E. Calfapietra, C. (Carlo) Brugnoli, E. 2016 https://doi.org/10.1007/s00300-015-1883-9 http://hdl.handle.net/11104/0267617 eng eng doi:10.1007/s00300-015-1883-9 urn:pissn: 0722-4060 urn:eissn: 1432-2056 http://hdl.handle.net/11104/0267617 Arctic ecosystems CO2 fluxes Speciesspecific photosynthetic capacity Soil temperature Carbon isotope composition Climate warming info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2016 ftczacademyscien https://doi.org/10.1007/s00300-015-1883-9 2024-01-09T17:37:43Z Climate change may turn Arctic biomes from carbon sinks into sources and vice versa, depending on the balance between gross ecosystem photosynthesis, ecosystem respiration (ER) and the resulting net ecosystem exchange (NEE). Photosynthetic capacity is species specific, and thus, it is important to quantify the contribution of different target plant species to NEE and ER. At Ny Alesund (Svalbard archipelago, Norway), we selected different Arctic tundra plant species and measured CO2 fluxes at plot scale and photosynthetic capacity at leaf scale. We aimed to analyze trends in CO2 fluxes during the transition seasons (beginning vs. end of the growing season) and assess which abiotic (soil temperature, soil moisture, PAR) and biotic (plot type, phenology, LAI, photosynthetic capacity) factors influenced CO2 emissions. NEE and ER differed between vegetation communities. All communities acted as CO2 sources, with higher source strength at the beginning than at the end of the growing season. The key factors affecting NEE were soil temperature, LAI and species-specific photosynthetic capacities, coupled with phenology. ER was always influenced by soil temperature. Measurements of photosynthetic capacity indicated different responses among species to light intensity, as well as suggesting possible gains in response to future increases in atmospheric CO2 concentrations. Species- specific adaptation to low temperatures could trigger significant feedbacks in a climate change context. Our data highlight the need to quantify the role of dominant species in the C cycle (sinks or sources), as changes of vegetation composition or species phenology in response to climate change may have great impact on the regional CO2 balance. Article in Journal/Newspaper Arctic Climate change Svalbard Tundra The Czech Academy of Sciences: Publication Activity (ASEP) Arctic Norway Svalbard Svalbard Archipelago Polar Biology 39 9 1581 1596
institution Open Polar
collection The Czech Academy of Sciences: Publication Activity (ASEP)
op_collection_id ftczacademyscien
language English
topic Arctic ecosystems
CO2 fluxes
Speciesspecific photosynthetic capacity
Soil temperature
Carbon isotope composition
Climate warming
spellingShingle Arctic ecosystems
CO2 fluxes
Speciesspecific photosynthetic capacity
Soil temperature
Carbon isotope composition
Climate warming
Cannone, N.
Augusti, A.
Malfasi, F.
Pallozi, E.
Calfapietra, C. (Carlo)
Brugnoli, E.
The interaction of biotic and abiotic factors at multiple spatial scales affects the variability of CO2 fluxes in polar environments
topic_facet Arctic ecosystems
CO2 fluxes
Speciesspecific photosynthetic capacity
Soil temperature
Carbon isotope composition
Climate warming
description Climate change may turn Arctic biomes from carbon sinks into sources and vice versa, depending on the balance between gross ecosystem photosynthesis, ecosystem respiration (ER) and the resulting net ecosystem exchange (NEE). Photosynthetic capacity is species specific, and thus, it is important to quantify the contribution of different target plant species to NEE and ER. At Ny Alesund (Svalbard archipelago, Norway), we selected different Arctic tundra plant species and measured CO2 fluxes at plot scale and photosynthetic capacity at leaf scale. We aimed to analyze trends in CO2 fluxes during the transition seasons (beginning vs. end of the growing season) and assess which abiotic (soil temperature, soil moisture, PAR) and biotic (plot type, phenology, LAI, photosynthetic capacity) factors influenced CO2 emissions. NEE and ER differed between vegetation communities. All communities acted as CO2 sources, with higher source strength at the beginning than at the end of the growing season. The key factors affecting NEE were soil temperature, LAI and species-specific photosynthetic capacities, coupled with phenology. ER was always influenced by soil temperature. Measurements of photosynthetic capacity indicated different responses among species to light intensity, as well as suggesting possible gains in response to future increases in atmospheric CO2 concentrations. Species- specific adaptation to low temperatures could trigger significant feedbacks in a climate change context. Our data highlight the need to quantify the role of dominant species in the C cycle (sinks or sources), as changes of vegetation composition or species phenology in response to climate change may have great impact on the regional CO2 balance.
format Article in Journal/Newspaper
author Cannone, N.
Augusti, A.
Malfasi, F.
Pallozi, E.
Calfapietra, C. (Carlo)
Brugnoli, E.
author_facet Cannone, N.
Augusti, A.
Malfasi, F.
Pallozi, E.
Calfapietra, C. (Carlo)
Brugnoli, E.
author_sort Cannone, N.
title The interaction of biotic and abiotic factors at multiple spatial scales affects the variability of CO2 fluxes in polar environments
title_short The interaction of biotic and abiotic factors at multiple spatial scales affects the variability of CO2 fluxes in polar environments
title_full The interaction of biotic and abiotic factors at multiple spatial scales affects the variability of CO2 fluxes in polar environments
title_fullStr The interaction of biotic and abiotic factors at multiple spatial scales affects the variability of CO2 fluxes in polar environments
title_full_unstemmed The interaction of biotic and abiotic factors at multiple spatial scales affects the variability of CO2 fluxes in polar environments
title_sort interaction of biotic and abiotic factors at multiple spatial scales affects the variability of co2 fluxes in polar environments
publishDate 2016
url https://doi.org/10.1007/s00300-015-1883-9
http://hdl.handle.net/11104/0267617
geographic Arctic
Norway
Svalbard
Svalbard Archipelago
geographic_facet Arctic
Norway
Svalbard
Svalbard Archipelago
genre Arctic
Climate change
Svalbard
Tundra
genre_facet Arctic
Climate change
Svalbard
Tundra
op_relation doi:10.1007/s00300-015-1883-9
urn:pissn: 0722-4060
urn:eissn: 1432-2056
http://hdl.handle.net/11104/0267617
op_doi https://doi.org/10.1007/s00300-015-1883-9
container_title Polar Biology
container_volume 39
container_issue 9
container_start_page 1581
op_container_end_page 1596
_version_ 1789962112823459840