Late Archean to Early Paleoproterozoic global tectonics, environmental change and the rise of atmospheric oxygen

Analysis of the tectonostratigraphic records of Late Archean to Early Paleoproterozoic terranes indicates linkage between global tectonics, changing sea levels and environmental conditions. A Late Archean tectonic cycle started at ~2.78 Ga involving the breakup of a pre-existing continent (Vaalbara)...

Full description

Bibliographic Details
Published in:Earth and Planetary Science Letters
Main Authors: Barley, M., Bekker, A., Krapez, Bryan
Format: Article in Journal/Newspaper
Language:unknown
Published: Elsevier Science BV 2005
Subjects:
Online Access:https://hdl.handle.net/20.500.11937/18839
https://doi.org/10.1016/j.epsl.2005.06.062
id ftcurtin:oai:espace.curtin.edu.au:20.500.11937/18839
record_format openpolar
spelling ftcurtin:oai:espace.curtin.edu.au:20.500.11937/18839 2023-06-11T04:05:16+02:00 Late Archean to Early Paleoproterozoic global tectonics, environmental change and the rise of atmospheric oxygen Barley, M. Bekker, A. Krapez, Bryan 2005 restricted https://hdl.handle.net/20.500.11937/18839 https://doi.org/10.1016/j.epsl.2005.06.062 unknown Elsevier Science BV http://hdl.handle.net/20.500.11937/18839 doi:10.1016/j.epsl.2005.06.062 environmental change oxygen Paleoproterozoic Archean global tectonics Journal Article 2005 ftcurtin https://doi.org/20.500.11937/1883910.1016/j.epsl.2005.06.062 2023-05-30T19:29:48Z Analysis of the tectonostratigraphic records of Late Archean to Early Paleoproterozoic terranes indicates linkage between global tectonics, changing sea levels and environmental conditions. A Late Archean tectonic cycle started at ~2.78 Ga involving the breakup of a pre-existing continent (Vaalbara) and the most prodigious period of generation and preservation of juvenile continental crust recorded in Earth history during a period of plume breakout (~2.72 to 2.65 Ga) accompanied by high sea levels. During this period, cratons formed by accretion of granitoid–greenstone terranes at convergent margins started to aggregate into larger continents (e.g. Kenorland). Lower sea levels between ~2.65 and 2.55 Ga were followed by a second (~2.51 to 2.45 Ga) period of plume breakout resulting in a global peak in magmatism, high sea levels and deposition of banded iron formations (BIF) on the trailing margins of the Pilbara and Kaapvaal cratons. Cratons in South Australia, Antarctica, India, and China record convergent margin magmatism, orogeny and high-grade metamorphism between 2.56 and 2.42 Ga. Continued aggregation of continental fragments (e.g. amalgamation of Indian cratons) may have formed the Earth’s first supercontinent by ~2.4 Ga with a return to low sea levels and relative tectonic quiescence before the supercontinent started to breakup from ~2.32 Ga. Although oxygenic photosynthesis had evolved by 2.71 Ga, the irreversible rise of atmospheric O2 to N105 PAL appears to have occurred between 2.47 and 2.40 Ga following the second plume breakout and coinciding with a decline in BIF deposition and the maximum extent of the supercontinent suggesting dynamic linkage between tectonics and both the sources and sinks of oxygen. Periods of plume breakout (2.72 to 2.65 Ga and 2.51 to 2.45 Ga) would have limited ocean productivity and the rate of photosynthesis and also enhanced the reduced conditions typical of the Archean biosphere, as well as the greenhouse gas contents of the atmosphere necessary to maintain temperate ... Article in Journal/Newspaper Antarc* Antarctica Curtin University: espace Indian Earth and Planetary Science Letters 238 1-2 156 171
institution Open Polar
collection Curtin University: espace
op_collection_id ftcurtin
language unknown
topic environmental change
oxygen
Paleoproterozoic
Archean
global tectonics
spellingShingle environmental change
oxygen
Paleoproterozoic
Archean
global tectonics
Barley, M.
Bekker, A.
Krapez, Bryan
Late Archean to Early Paleoproterozoic global tectonics, environmental change and the rise of atmospheric oxygen
topic_facet environmental change
oxygen
Paleoproterozoic
Archean
global tectonics
description Analysis of the tectonostratigraphic records of Late Archean to Early Paleoproterozoic terranes indicates linkage between global tectonics, changing sea levels and environmental conditions. A Late Archean tectonic cycle started at ~2.78 Ga involving the breakup of a pre-existing continent (Vaalbara) and the most prodigious period of generation and preservation of juvenile continental crust recorded in Earth history during a period of plume breakout (~2.72 to 2.65 Ga) accompanied by high sea levels. During this period, cratons formed by accretion of granitoid–greenstone terranes at convergent margins started to aggregate into larger continents (e.g. Kenorland). Lower sea levels between ~2.65 and 2.55 Ga were followed by a second (~2.51 to 2.45 Ga) period of plume breakout resulting in a global peak in magmatism, high sea levels and deposition of banded iron formations (BIF) on the trailing margins of the Pilbara and Kaapvaal cratons. Cratons in South Australia, Antarctica, India, and China record convergent margin magmatism, orogeny and high-grade metamorphism between 2.56 and 2.42 Ga. Continued aggregation of continental fragments (e.g. amalgamation of Indian cratons) may have formed the Earth’s first supercontinent by ~2.4 Ga with a return to low sea levels and relative tectonic quiescence before the supercontinent started to breakup from ~2.32 Ga. Although oxygenic photosynthesis had evolved by 2.71 Ga, the irreversible rise of atmospheric O2 to N105 PAL appears to have occurred between 2.47 and 2.40 Ga following the second plume breakout and coinciding with a decline in BIF deposition and the maximum extent of the supercontinent suggesting dynamic linkage between tectonics and both the sources and sinks of oxygen. Periods of plume breakout (2.72 to 2.65 Ga and 2.51 to 2.45 Ga) would have limited ocean productivity and the rate of photosynthesis and also enhanced the reduced conditions typical of the Archean biosphere, as well as the greenhouse gas contents of the atmosphere necessary to maintain temperate ...
format Article in Journal/Newspaper
author Barley, M.
Bekker, A.
Krapez, Bryan
author_facet Barley, M.
Bekker, A.
Krapez, Bryan
author_sort Barley, M.
title Late Archean to Early Paleoproterozoic global tectonics, environmental change and the rise of atmospheric oxygen
title_short Late Archean to Early Paleoproterozoic global tectonics, environmental change and the rise of atmospheric oxygen
title_full Late Archean to Early Paleoproterozoic global tectonics, environmental change and the rise of atmospheric oxygen
title_fullStr Late Archean to Early Paleoproterozoic global tectonics, environmental change and the rise of atmospheric oxygen
title_full_unstemmed Late Archean to Early Paleoproterozoic global tectonics, environmental change and the rise of atmospheric oxygen
title_sort late archean to early paleoproterozoic global tectonics, environmental change and the rise of atmospheric oxygen
publisher Elsevier Science BV
publishDate 2005
url https://hdl.handle.net/20.500.11937/18839
https://doi.org/10.1016/j.epsl.2005.06.062
geographic Indian
geographic_facet Indian
genre Antarc*
Antarctica
genre_facet Antarc*
Antarctica
op_relation http://hdl.handle.net/20.500.11937/18839
doi:10.1016/j.epsl.2005.06.062
op_doi https://doi.org/20.500.11937/1883910.1016/j.epsl.2005.06.062
container_title Earth and Planetary Science Letters
container_volume 238
container_issue 1-2
container_start_page 156
op_container_end_page 171
_version_ 1768373642509418496