Rate of convergence to Gaussian measures on $n$-spheres and Jacobi hypergroups

In this paper we prove central limit theorems of the following kind: let $S^d \subset \mathbb{R}^{d + 1}$ be the unit sphere of dimension $d \geq 2$ with uniform distribution $\omega_d$. For each $k \epsilon \mathbb{N}$, consider the isotropic random walk $(X_n^k)_{n \geq 0}$ on $S^d$ starting at th...

Full description

Bibliographic Details
Published in:The Annals of Probability
Main Author: Voit, Michael
Format: Text
Language:English
Published: The Institute of Mathematical Statistics 1997
Subjects:
Online Access:http://projecteuclid.org/euclid.aop/1024404296
https://doi.org/10.1214/aop/1024404296
id ftculeuclid:oai:CULeuclid:euclid.aop/1024404296
record_format openpolar
spelling ftculeuclid:oai:CULeuclid:euclid.aop/1024404296 2023-05-15T17:39:55+02:00 Rate of convergence to Gaussian measures on $n$-spheres and Jacobi hypergroups Voit, Michael 1997-01 application/pdf http://projecteuclid.org/euclid.aop/1024404296 https://doi.org/10.1214/aop/1024404296 en eng The Institute of Mathematical Statistics 0091-1798 Copyright 1997 Institute of Mathematical Statistics Random walks on $n$-spheres central limit theorem Gaussian measures compact symmetric spaces of rank one total variation distance Jacobi polynomials 60J15 60F05 60B10 33C25 42C10 43A62 Text 1997 ftculeuclid https://doi.org/10.1214/aop/1024404296 2018-10-06T11:34:55Z In this paper we prove central limit theorems of the following kind: let $S^d \subset \mathbb{R}^{d + 1}$ be the unit sphere of dimension $d \geq 2$ with uniform distribution $\omega_d$. For each $k \epsilon \mathbb{N}$, consider the isotropic random walk $(X_n^k)_{n \geq 0}$ on $S^d$ starting at the north pole with jumps of fixed sizes $\angle (X_n^k, X_{n - 1}^k) = \pi/\sqrt{k}$ for all $n \geq 1$. Then there is some $k_0(d)$ such that for all $k \geq k_0(d)$, the distributions $\varrho_k$ of $X_k^k$ have continuous, bounded $\omega_d$-densities $f_k$. Moreover, there is a (known) Gaussian measure $\nu$ on $S^d$ with $\omega_d$-density such that $||f_k - h||_{\infty} = O(1/k)$ and $||\varrho_k - \nu|| = O(1/k)$ for $k \to \infty$, where $O(1/k)$ is sharp. We shall derive this rate of convergence in the central limit theorem more generally for a quite general class of isotropic random walks on compact symmetric spaces of rank one as well as for random walks on $[0, \pi]$ whose transition probabilities are related to product linearization formulas of Jacobi polynomials. Text North Pole Project Euclid (Cornell University Library) North Pole The Annals of Probability 25 1
institution Open Polar
collection Project Euclid (Cornell University Library)
op_collection_id ftculeuclid
language English
topic Random walks on $n$-spheres
central limit theorem
Gaussian measures
compact symmetric spaces of rank one
total variation distance
Jacobi polynomials
60J15
60F05
60B10
33C25
42C10
43A62
spellingShingle Random walks on $n$-spheres
central limit theorem
Gaussian measures
compact symmetric spaces of rank one
total variation distance
Jacobi polynomials
60J15
60F05
60B10
33C25
42C10
43A62
Voit, Michael
Rate of convergence to Gaussian measures on $n$-spheres and Jacobi hypergroups
topic_facet Random walks on $n$-spheres
central limit theorem
Gaussian measures
compact symmetric spaces of rank one
total variation distance
Jacobi polynomials
60J15
60F05
60B10
33C25
42C10
43A62
description In this paper we prove central limit theorems of the following kind: let $S^d \subset \mathbb{R}^{d + 1}$ be the unit sphere of dimension $d \geq 2$ with uniform distribution $\omega_d$. For each $k \epsilon \mathbb{N}$, consider the isotropic random walk $(X_n^k)_{n \geq 0}$ on $S^d$ starting at the north pole with jumps of fixed sizes $\angle (X_n^k, X_{n - 1}^k) = \pi/\sqrt{k}$ for all $n \geq 1$. Then there is some $k_0(d)$ such that for all $k \geq k_0(d)$, the distributions $\varrho_k$ of $X_k^k$ have continuous, bounded $\omega_d$-densities $f_k$. Moreover, there is a (known) Gaussian measure $\nu$ on $S^d$ with $\omega_d$-density such that $||f_k - h||_{\infty} = O(1/k)$ and $||\varrho_k - \nu|| = O(1/k)$ for $k \to \infty$, where $O(1/k)$ is sharp. We shall derive this rate of convergence in the central limit theorem more generally for a quite general class of isotropic random walks on compact symmetric spaces of rank one as well as for random walks on $[0, \pi]$ whose transition probabilities are related to product linearization formulas of Jacobi polynomials.
format Text
author Voit, Michael
author_facet Voit, Michael
author_sort Voit, Michael
title Rate of convergence to Gaussian measures on $n$-spheres and Jacobi hypergroups
title_short Rate of convergence to Gaussian measures on $n$-spheres and Jacobi hypergroups
title_full Rate of convergence to Gaussian measures on $n$-spheres and Jacobi hypergroups
title_fullStr Rate of convergence to Gaussian measures on $n$-spheres and Jacobi hypergroups
title_full_unstemmed Rate of convergence to Gaussian measures on $n$-spheres and Jacobi hypergroups
title_sort rate of convergence to gaussian measures on $n$-spheres and jacobi hypergroups
publisher The Institute of Mathematical Statistics
publishDate 1997
url http://projecteuclid.org/euclid.aop/1024404296
https://doi.org/10.1214/aop/1024404296
geographic North Pole
geographic_facet North Pole
genre North Pole
genre_facet North Pole
op_relation 0091-1798
op_rights Copyright 1997 Institute of Mathematical Statistics
op_doi https://doi.org/10.1214/aop/1024404296
container_title The Annals of Probability
container_volume 25
container_issue 1
_version_ 1766140679059144704