Analysis of the impact of organic pollutants on marine microbial communities

Increasing amounts of organic synthetic chemicals are currently emitted to the environment by human activities. The more recalcitrant fraction of this pollutant mixture reaches marine ecosystems mainly through rivers, continental run-off, and diffuse atmospheric inputs. Once in seawater, it represen...

Full description

Bibliographic Details
Main Author: Cerro Gálvez, Elena
Other Authors: Vila Costa, Maria, Dachs, Jordi
Format: Thesis
Language:English
Published: 2022
Subjects:
Online Access:http://hdl.handle.net/10261/339690
Description
Summary:Increasing amounts of organic synthetic chemicals are currently emitted to the environment by human activities. The more recalcitrant fraction of this pollutant mixture reaches marine ecosystems mainly through rivers, continental run-off, and diffuse atmospheric inputs. Once in seawater, it represents the anthropogenic fraction of the dissolved organic carbon (ADOC) pool. However, the total amount of ADOC is unknown, while its effects to ecosystems and detailed composition is largely unknown. Over the past decades, the scientific research effort has focused on the effects of organic pollutants (OPs) in marine biota, especially in oil spills events or under toxicological testing in laboratories, neglecting the importance of the chronic pollution perturbation of the biosphere composition caused by diffusive inputs of large number of pollutants at low concentrations. Our aim was to combine functional genomic tools with quantitative biogeochemical approaches under manipulated conditions to determine the bidirectional interaction between marine microbial community structure and function and the ADOC present in coastal seawater. Additionally, it was also intended to perform similar experiments in areas with diverse environmental conditions to elucidate the role of the trophic conditions and levels of pollutants in the response. In order to fulfil the proposed objectives, several OP amendment experiments were performed with different OP additions and contrasted seawater from the North-Western Mediterranean, the Arctic and the Antarctic. On the one hand, the effect caused by 4 families of pollutants individually (alkanes, polycyclic aromatic hydrocarbons, organophosphate esters and perfluoroalkyl substances (PFAS)) was tested in 5 marine bacterial communities of the NW Mediterranean, and the specific effect of perfluorooctanesulfonate (PFOS) and perfluorooctanoate acids (corresponding to the family of PFAS) in communities from Deception Island (Antarctica). On the other hand, experiments were conducted to observe the ...